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Organisational issues

Lecturer: Roland Langrock (roland.langrock@uni-bielefeld.de)

Course language: English

Lectures: Thursday 12h – 14h in T2-205
(no streaming, no recording)

Practicals with R: with Carlina Feldmann, Monday 14h – 16h, V2-200

Exam: most likely an oral exam in March, exact format depends on module

Course material & literature:
• slides with and without my scribblings will be in the eKVV (LernraumPlus)
• Dobson & Barnett: An Introduction to Generalized Linear Models
• Fahrmeir, Kneib, Lang & Marx: Regression — Models, Methods and Applications
• (there are various other useful books and resources on GLMs!)
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Chapter 1: Introduction & motivation

1.1 Overview
1.2 Motivating examples
1.3 From LMs to GLMs
1.4 Some very basic probability calculus & notation
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Regression, LMs and GLMs

regression models are used to explain the directed relationship
between a response variable1 and covariates2:

Y = f (x1, . . ., xp) + ϵ, E(ϵ) = 0

⇔ E(Y ) = f (x1, . . ., xp)

idea: detect the actual signal, f , whilst accounting for the noise, ϵ

typical uses of such a regression model:
• better understand the patterns in the data (e.g. complex economic data)
• (statistically) test the effect of some covariate (e.g. a drug)
• predict future outcomes based on fitted model (e.g. football scores)
• detect outliers (e.g. in a rent index)

linear models (LMs) constitute a special class of regression models

generalised linear models (GLMs) generalise LMs, allowing
for many more types of data and also more complex forms of f

1a.k.a. outcome or dependent variable
2a.k.a. predictors, independent variables, features, explanatory variables
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LMs in a nutshell

linear regression: the case where the signal f can be expressed as a
linear combination:

E(Y ) = f (x1, . . . , xp) = β0 + β1x1 + β2x2 + . . .+ βpxp

linearity makes life easier

assuming that Y is (conditionally) normally dist. further simplifies inference

both assumptions are restrictive and for some data inadequate

in the following, we will consider example data motivating the consideration
of GLMs as more flexible regression models
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Chapter 1: Introduction & motivation

1.2 Motivating examples
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Example 1: goals in Bundesliga matches (season 2018/19)

diff. in market
match team opponent goals value (in mill. Euro)

1 BAY HOF 3 496
1 HOF BAY 1 -496
2 SCF FRA 0 -153
2 FRA SCF 2 153
3 FOR AUG 1 -45
3 AUG FOR 2 45

...
...

...
...

...

306 B04 FRA 6 125
306 FRA B04 1 -125

Table: Bundesliga data from the 2018/19 season (two rows for each match!).
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Fitted linear model:

E(goals) = β̂0 + β̂1 ·mvdiff

= 1.5833 + 0.0017 ·mvdiff

Can we use this model to forecast say the number of goals Dortmund will score
against Stuttgart this weekend?
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Problems of the model E(goals) = β0 + β1 ·mvdiff when forecasting goals:

without distributional assumption, model doesn’t give us e.g. Pr(goals ≥ 2)

under the usual assumption of normally distributed errors ϵ, the model would
yield a continuous forecast distribution for a discrete variable:

goals ∼ N (β0 + β1 ·mvdiff, σ2)

we could instead assume that

goals ∼ Po(λ), λ = E(goals) = β0 + β1 ·mvdiff,

but then for score difference < −922, the model predicts a negative λ...

(goals ∼ Po(λ) would also imply heteroscedasticity, such that least squares
would not be optimal)
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Example 2: Donner party

April 1846, USA: a group of 87 migrants — most notably including the Reed &
Donner families — leaves Illinois for California hoping for a better life.
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trek had to cross the Rockies, which was possible only from April–Sept.

the Donner Party got going in May (very late!)

they took an untested route, resulting in several delays and eventually in
them getting trapped in snow storms in October

when the last survivor was rescued (∼ 6 months later), 40 of the 87
members of the Donner Party had died
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size of the
name survival gender age kin group

Antoine no male 23 1
Edward yes male 13 9
Isabella yes female 1 9
James yes male 4 9

Elisabeth no female 45 16
Margaret no female 1 4

Sarah yes female 22 12

...
...

...
...

...

Ada no female 3 4

Source: Grayson (1990)
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there seems to be some correlation between age and mortality

not shown here: there is also correlation between
• size of the group of kin & mortality;
• gender and mortality (56% of the men died, but only 30% of the women)
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Fitted linear model:

E(fate) = β̂0 + β̂1 · age

= 0.6952− 0.0077 · age

Does this model make any sense?
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Obvious problems with the linear model E(fate) = β0 + β1 · age:

what does say E(fate) = 0.6952− 0.0077 · 20 ≈ 0.5412 even mean?

under the normal assumption, the model would yield a continuous forecast
distribution for a binary variable — doesn’t make any sense

we could instead assume

fate ∼ Bern(π), π = E(fate) = β0 + β1 · age,

but then for age > 90, the model predicts a negative survival probability...

(fate ∼ Bern(π) would also imply heteroscedasticity...)
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Example 3: beetles

Toxicological study by Bliss (Annals of Applied Biology, 1935):

ni , the yi , the yi/ni , the xi , the
number of number of proportion of concentration

beetles beetles killed beetles killed of toxic gas

i = 1 59 6 0.10 49.1
i = 2 60 13 0.22 53.0
i = 3 62 18 0.29 56.9
i = 4 56 28 0.50 60.8
i = 5 63 52 0.83 64.8
i = 6 59 53 0.90 68.7
i = 7 62 61 0.98 72.6
i = 8 60 60 1.00 76.5
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Fitted linear model:

E(proportion killed) = β̂0 + β̂1 · concentration

= −1.7406 + 0.0373 · concentration
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Obvious problems with the linear model E(prop. killed) = β0 + β1 · conc.:

model predicts negative proportion of beetles killed for conc. < 46.7...

...and proportions larger than one for conc. > 73.4
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Example 4: Lego prices

Lego product price in Euro number of pieces

“Yellow Submarine” 50 553
“Türme aus Eis” 43 454

“Kräftemessen um Atlantis” 18 197
“Polizeiwache” 80 894

“Hüte Dich vor Vulture” 33 375

...
...

...

“Küstenwachzentrum” 85 792

slide 22



●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●●

●

●

● ●

●
●

●

●

0 500 1000 1500

0
50

10
0

15
0

20
0

25
0

30
0

number of pieces

pr
ic

e 
in

 E
ur

o

Fitted linear model:

E(price) = β̂0 + β̂1 · pieces

= −10.5366 + 0.1253 · pieces
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Problem of the linear model E(price) = β0 + β1 · pieces:

for products with < 85 pieces, the fitted model predicts a negative price

this could be overcome by modelling log(price) rather than price directly

but using GLMs we can also model price directly without the problem above
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Chapter 1: Introduction & motivation

1.3 From LMs to GLMs
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Outline: from LMs to GLMs

GLMs generalise LMs in two ways:

1. various different distributions can be assumed for the response variable Y

2. instead of modelling E(Y ), a transformation g
(
E(Y )

)
can be modelled

Notably, GLMs constitute a unifying framework which includes many important
models — e.g. linear, logistic & Poisson regression — as special cases.
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Outline: from LMs to GLMs, historically

most of the different types of GLMs, in particular Poisson regression and
logistic regression, have been around for many decades

but the unification of the different approaches within a single framework was
accomplished only in 1972, by Nelder and Wedderburn

“We hope that the approach [...] will prove to be a useful way of unifying what are
often presented as unrelated statistical procedures, and that this unification will
simplify the teaching of the subject [...]”

“We believe that the generalized linear models here developed could form a useful
basis for courses in statistics”
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Outline: challenges when going from LMs to GLMs

Although conceptually fairly straightforward, the extension from LMs to GLMs will
bring some challenges, including the following:

heteroscedasticity: variance of errors will, in general, vary with covariate
values⇝ weighted least squares instead of ordinary least squares

in general, there is no analytical solution for the estimation problem
⇝ numerical maximisation techniques need to be used

without normality, some inferential tools will become slightly more involved

model checking is not as straightforward (also due to heteroscedasticity)
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Chapter 1: Introduction & motivation

1.4 Some very basic probability theory concepts & notation
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Random variables

A discrete random variable X takes finitely many or countably many
values x1, . . . , xk , . . . .

The probability mass function (p.m.f.) of a discrete random variable is

f (x) =

{
Pr(X = x) if x ∈ {x1, x2, . . . , xk , . . .}
0 otherwise

We call X a continuous random variable if there is an f (x) ≥ 0, the
(probability) density function (p.d.f.), such that for any interval [a, b]:

Pr(a ≤ X ≤ b) =
∫ b

a
f (x)dx
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The mean of a random variable is

µ = E(X) =

{∑
i≥1 xi f (xi) if X is discrete∫∞

−∞ xf (x)dx if X is continuous

(the value which X in the long run takes on average)

Some calculation rules:

E(aX + b) = aE(X) + b

E(g(X)) =

{∑
i≥1 g(xi)f (xi) if X is discrete∫∞

−∞ g(x)f (x)dx if X is continuous

E(X + Y ) = E(X) + E(Y )

E(X · Y ) = E(X) · E(Y ) if X ,Y are independent
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The variance of a random variable is

σ2 = Var(X) = E(X − µ)2

=

{∑
i≥1(xi − µ)2f (xi) if X is discrete∫∞

−∞(x − µ)2f (x)dx if X is continuous

(a measure for how widely spread out realisations of X are around µ = E(X))

Some calculation rules:

Var(X) = E(X 2)−
(
E(X)

)2
= E(X 2)− µ2

Var(aX + b) = a2Var(X)

Var(X + Y ) = Var(X) + Var(Y ) if X ,Y indep.
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Some important distributions

distribution symbol p.m.f. / p.d.f. f (x) support T E(X) Var(X)

Bernoulli Bern(π) πx (1 − π)1−x {0, 1} π π(1 − π)

Binomial Bin(n, π)
(

n
x

)
πx (1 − π)n−x {0, 1, . . . , n} nπ nπ(1 − π)

Poisson Po(λ) λx
x! e−λ {0, 1, 2, . . .} λ λ

Exponential Exp(λ) λe−λx (0,∞) 1
λ

1
λ2

Gamma G(ν, θ)
yν−1 exp(−y/θ)

Γ(ν)θν
(0,∞) νθ νθ2

Normal N (µ, σ2) 1√
2πσ

exp
(
− (x−µ)2

2σ2
)

(−∞,∞) µ σ2
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Chapter 2: Revision of standard
linear regression models

2.1 Basic model formulation
2.2 Least squares estimation & statistical inference
2.3 Flexible modelling using linear models

slide 34



Linear regression — terminology

regression: the statistical modelling of the relationship between a response
variable Y and one or more covariates x1, . . . , xp

general formulation:

Yi = f (xi1, . . . , xip) + ϵi , E(ϵi) = 0, i = 1, . . . , n

⇔ E(Yi) = f (xi1, . . . , xip), i = 1, . . . , n

linear regression: the case where f has a linear form,

E(Yi) = β0 + β1xi1 + . . . + βpxip, i = 1, . . . , n

simple linear regression: the case p = 1 (a single covariate)

multiple linear regression: the case p ≥ 2 (multiple covariates)

linearity makes our life much easier (and is often reasonable)
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Example — American Airlines flights

we consider 100 flights of American Airlines

for each flight, we have data available on the distance flown and
on the block (gate-to-gate) time:

distance flown block times
(in naut. miles) (in minutes)

1 258 64
2 1189 195
3 1145 178
4 258 72
5 403 78
6 612 146
7 175 46
8 733 138
9 783 100

...
...

...

100 1438 212
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American Airlines flights modelled using simple linear regression

observations are pairs (x11, y1), (x21, y2), . . . , (xn1, yn)

(xi1: distance of i–th flight; yi : block time of i–th flight; n = 100)

the block times Yi strongly depend on the distances xi1 to be flown

however, even for similarly long flights there is considerable variation

a simple linear regression model,

Yi = β0 + β1xi1 + ϵi , i = 1, . . . , n,

here seems reasonable (both conceptually & based on data inspection)

Rationale: find straight line that describes the relationship between xi1 and Yi as
well as possible, while also accounting for the noise in the process.
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Simple linear regression (p = 1) — matrix notation

The model specification

Yi = β0 + β1xi1 + ϵi , i = 1, . . . , n,

comprises n equations, one for each data point:

Y1 = β0 + β1x11 + ϵ1

Y2 = β0 + β1x21 + ϵ2

...

Yn = β0 + β1xn1 + ϵn

Representing this equation system using matrix notation makes things easier!
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Let’s write the simple linear regression model in matrix notation:

Y1 = β0 + β1x11 + ϵ1

... ⇝ Y = Xβ + ϵ,

Yn = β0 + β1xn1 + ϵn

where Y =


Y1

Y2

...
Yn

 , X =


1 x11

1 x21

...
...

1 xn1

 , β =

(
β0

β1

)
, ϵ =


ϵ1

ϵ2

...
ϵn
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Multiple linear regression (p ≥ 2) — matrix notation

Completely analogous for multiple covariates:

Y1 = β0 + β1x11 + . . .+ βpx1p + ϵ1

... ⇝ Y = Xβ + ϵ,

Yn = β0 + β1xn1 + . . .+ βpxnp + ϵn

wobei Y =


Y1

Y2

...
Yn

 , X =


1 x11 . . . x1p

1 x21 . . . x2p

...
...

1 xn1 . . . xnp

 , β =


β0

β1

...
βp

 , ϵ =


ϵ1

ϵ2

...
ϵn


We call X the design matrix.
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Chapter 2: Revision of standard
linear regression models

2.2 Least squares estimation & statistical inference
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Estimation of the coefficients
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We consider the sum of squares as the “distance” between model and data:

S(β0, β1, . . . , βp) =
n∑

i=1

ϵ2
i =

n∑
i=1

(
yi − (β0 + β1xi1 + . . .+ βpxip)

)2

We then want to find the β0, β1, . . . , βp which minimise S(β0, β1, . . . , βp) —
together these constitute the least squares estimator (LSE):

β̂ = (β̂0, β̂1, . . . , β̂p) = argmin
β0,β1,...,βp

S(β0, β1, . . . , βp)

(key advantage of LSE over maximum likelihood estimation: no distributional
assumption needs to be made for the error terms ϵi )
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Derivation of the LSE for p = 1 (in class)

slide 44



LSE

For the linear regression model

Yi = β0 + β1xi1 + . . .+ βpxip + ϵi , E(ϵi) = 0, i = 1, . . . , n,

in matrix notation
Y = Xβ + ϵ,

the LSE is the solution to the equation system

Xt Xβ̂ = Xt Y,

which, if X has full column rank, is given by

β̂ = (Xt X)−1Xt Y.
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Worked example in R — rent prices in Bielefeld

monthly rent (Euro) area (m2) year

1 780 67.2 2018
2 610 69.8 1958
3 687 80.2 1995
4 580 66.8 1977
5 385 52.0 1950
6 594 68.9 1957
7 350 39.0 1991
8 790 81.4 2013

...
...

...

3854 650 79.1 1955

Loading the data in R:

> rent_data<-read.csv("http://www.rolandlangrock.com//Daten//rents.csv")
> attach(rent_data)
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Obtaining the LSE from scratch:

> X<-cbind(rep(1,3854),area,year)
> beta<-solve(t(X)%*%X)%*%t(X)%*%rent

> beta
-2146.724893

area 7.906339
year 1.086172

Alternatively, we can simply use the lm function:

> mod<-lm(rent~area+year)
> summary(mod)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.147e+03 1.459e+02 -14.71 <2e-16 ***
area 7.906e+00 9.265e-02 85.33 <2e-16 ***
year 1.086e+00 7.452e-02 14.58 <2e-16 ***
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The fitted model:

renti = −2146.72 + 7.91 · areai + 1.09 · yeari + ϵi
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Linear regression — the key assumptions

Standard assumptions:

(i) Y = Xβ + ϵ, E(ϵ) = 0 (linearity)

(ii) Var(ϵi) = σ2 (homoscedasticity)

(iii) Cov(ϵi , ϵj) = 0 for all i, j (uncorrelated errors)

Possible additional assumption:

(iv) ϵi ∼ N (0, σ2) (Gaussian errors)
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Heteroscedasticity and weighted least squares (illustrated for p = 1)

For GLMs, heteroscedasticity will come into play. What does that mean?

Var(ϵi) = σi
2 (not constant!)

the individual data points carry different amounts of information:
• σ2

i small⇝ a lot of information on f and hence (β0, β1)
• σ2

i large⇝ little information on f and hence (β0, β1)

It then makes intuitive sense3 to consider the weighted sum of squares,

S(β0, β1) =
n∑

i=1

wi
(
yi − (β0 + β1xi1)

)2
=

n∑
i=1

wiϵ
2
i ,

where wi =
1
σ2

i
, i = 1, . . . , n.

3and in some sense (‘BLUE’) is also mathematically optimal
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Derivation of the weighted LSE (in class)
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Weighted LSE

For the linear regression model as on slide 45, but with

Var(ϵi) = σ2
i ,

the weighted LSE is given by

β̂ = (Xt WX)−1Xt WY,

where W = diag
(
w1, . . . ,wn

)
, wi =

1
σ2

i
, i = 1, . . . , n.

slide 52



Distribution of the LSE

Reminder: an estimator such as the LSE, β̂ = (Xt X)−1Xt Y, is a random
variable, since it is a function of random variables (here the Yi ).

For example, for the given 100 AA flights, we obtain a specific value for β̂, but if
we consider 100 other AA flights, then we’ll get a different estimate.

As a random variable, β̂ follows a distribution, based on which we can construct

confidence intervals and

hypothesis tests
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Suppose that (i)–(iii) are satisfied, and that the design matrix X has full column
rank. If additionally (iv) is satisfied4, then

β̂ ∼ Np+1
(
β, σ2(Xt X)−1)

If σ2 is estimated — as is basically always the case in practice — then the
components of β̂ are t–distributed with n − (p + 1) degrees of freedom.

4 if (iv) is not satisfied, then the estimator is still approximately normally distributed for large n
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Distribution of the LSE — illustration
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Figure: LSEs obtained in 1000 simulation runs (blue dots), each run with 50 data points
from the model Yi = 2 + 0.2xi1 + ϵi , and theoretical distribution of the LSE (contour lines).
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Testing H0: βj = 0

The null hypothesis H0: βj = 0 is rejected if∣∣∣β̂j/σ̂β̂j

∣∣∣ > t1−α/2,n−(p+1)

⇝ if the test statistic lies in the (extreme) tail of the t1−α/2,n−(p+1) distribution,
then the data are very unlikely under H0, so that we have reason to doubt H0

⇝ we reject H0 at level α if the probability of observing a test statistic at least as
extreme as β̂j/σ̂β̂j

, under H0 — the so-called p-value — is less than α
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Chapter 2: Revision of standard
linear regression models

2.3 Flexible modelling using linear models
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Flexible modelling with linear regression models

the assumption of linearity isn’t as restrictive as it may seem

if some covariate doesn’t have a linear effect on the response variable, then
a transformation may make the system linear

in such cases, a linear regression — using all the basic techniques & tools
— is conducted using the transformed variable(s)
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Variable transformation

in some cases, the effect of xi1 on the response Y is nonlinear, but the
relationship becomes linear after a transformation h(xi1)

in such a case, we can simply estimate the linear model

Yi = β0 + β1x∗
i1 + ϵi ,

where x∗
i1 = h(xi1), using least squares

given β̂, we can re-consider the original variable, i.e. Yi = β̂0 + β̂1h(xi1) + ϵi
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Polynomial regression

polynomial effects can be modelled in the same manner

for example, the model

Yi = β0 + β1xi1 + β2x2
i1 + ϵi

can be formulated and fitted as the multiple linear model

Yi = β0 + β1xi1 + β2xi2 + ϵi ,

where xi2 = x2
i1

quadratic terms are common, cubic terms sometimes seen, but higher
orders are rarely considered, since the models become too unstable
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Example quadratic regression — rent prices in Bielefeld

renti = 176241 + 7.563 · areai − 180.3 · yeari + 0.046 · year2
i + ϵi
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In R:

mod<-lm(rent~area+year+I(year^2))
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Example polynomial regression — global warming
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Figure: Monthly deviation of global average temperature from long-term mean, with fitted
polynomial curve of order 4.
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Interaction terms

an interaction exists when the effect of a covariate depends on
the value of another covariate

for example, it could be the case that additional square metres are more
expensive in newer than in older appartments

this can be accounted for using an interaction term:

Yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + ϵi ,

where xi1 and xi2 correspond to “area” and “year”, respectively
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Interaction terms — illustration
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renti = 2871− 60.81 · areai − 1.46 · yeari + 0.03 · areai · yeari + ϵi
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Chapter 3: Non-normal data and the
exponential family of distributions

3.1 Distributions of interest
3.2 The exponential family of distributions
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Overview of this chapter

Part I:

a look back to the motivating examples from the intro

what distributions would we want to use?

how would the corresponding regression models look like?

Part II:

define unifying framework: the exponential family of distributions

⇝ this will later allow us to develop a set of inferential methods
that applies to all regression models covered above (in Part I)
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Example goals scored in football matches
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Example football scores — response distribution

What would be an appropriate distribution for Y = number of goals?

normal distribution isn’t going to work here — otherwise any forecast
distribution will be continuous, which doesn’t make sense for count data

instead, the Poisson distribution, with probability mass function

p(y) =
λy

y!
exp(−λ), y = 0, 1, 2, . . . ,

seems to be a sensible choice given that we deal with count data5

5the Poisson distribution is the standard choice for modelling count data — a more flexible alternative
is given by the negative binomial distribution
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Poisson regression models

if Y ∼ Po(λ), then
E(Y ) = Var(Y ) = λ

the parameter λ of the Poisson distribution needs to be positive

in principle, we could simply consider the model

Yi ∼ Po(λi), λi = E(Yi) = β0 + β1xi1

however, we then might obtain negative λi ’s for certain values of xi1

thus, we will (usually) use the following model instead:

Yi ∼ Po(λi), λi = E(Yi) = exp
(
β0 + β1xi1

)
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Donner party example
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Donner party example — response distribution

What would be an appropriate distribution for the binary variable Y?

normal distribution doesn’t make any sense for binary outcomes

instead, the Bernoulli distribution, with probability mass function

p(y) =

{
π if y = 1;
1− π if y = 0,

ought to be used
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Bernoulli (logistic) regression models

if Y ∼ Bern(π), then

E(Y ) = π, Var(Y ) = π(1− π)

the success probability per trial, π, needs to be in [0, 1]

again, in principle, we could formulate a regression model such as

Yi ∼ Bern(πi), πi = E(Yi) = β0 + β1xi1

for some xi1 we would then obtain values outside [0, 1] for πi

we will (usually) use the following model instead:

Yi ∼ Bern(πi), πi = E(Yi) = logit−1(β0 + β1xi1) =
exp
(
β0 + β1xi1

)
exp
(
β0 + β1xi1

)
+ 1
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Beetle example

ni , the yi , the yi/ni , the xi , the
number of number of proportion of concentration

beetles beetles killed beetles killed of toxic gas

i = 1 59 6 0.10 49.1
i = 2 60 13 0.22 53.0
i = 3 62 18 0.29 56.9
i = 4 56 28 0.50 60.8
i = 5 63 52 0.83 64.8
i = 6 59 53 0.90 68.7
i = 7 62 61 0.98 72.6
i = 8 60 60 1.00 76.5
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Beetle example — response distribution

What would be an appropriate distribution for bounded counts?

the response Y gives counts bounded by the number of beetles exposed

assuming independence of the individual beetles, the binomial
distribution, with probability mass function

p(y) =

(
n
y

)
πy(1− π)n−y , y = 0, 1, . . . , n,

is the obvious choice
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Binomial (logistic) regression models

if Y ∼ Bin(n, π), then

E(Y ) = nπ ⇔ E(Y/n) = π

thus, we can use a model analogous to the one considered before:

Yi ∼ Bin(ni , πi), πi = E(Yi/ni) = logit−1(β0+β1xi1) =
exp
(
β0 + β1xi1

)
exp
(
β0 + β1xi1

)
+ 1
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Example Lego prices
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Example Lego prices — response distribution

What would be an appropriate distribution for the positive continuous variable Y?

normal distribution could be OK if obs. are clearly distinct from 0 — forecast
distributions then wouldn’t include substantial mass on negative values

in general, the gamma distribution may however be more appropriate6

6there are alternatives, but the gamma distribution is already quite flexible
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The gamma distribution

Density of a gamma-distributed random variable Y :

f (y) =
yν−1 exp(−y/θ)

Γ(ν)θν
, y > 0

The parameters ν and θ are called shape and scale, respectively.
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6

Figure: Example p.d.f.s for gamma distributions with different values of ν and θ.
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Gamma regression models

if Y ∼ G(ν, θ) (gamma distributed), then

E(Y ) = νθ, Var(Y ) = νθ2

we could for example formulate a regression model

Yi ∼ G(νi , θi), νiθi = E(Yi) = β0 + β1xi1

same problem as before: this model might give negative means...

we could for example use the following model instead7:

Yi ∼ G(ν, θi), νθi = E(Yi) = exp
(
β0 + β1xi1

)

7note it will later become clear why we’re considering ν to be constant
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Chapter 3: Non-normal data and the
exponential family of distributions

3.2 The exponential family of distributions
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Exponential family — motivation

Where do we stand?

we understand why in some regression scenarios we would like to be able to
use response distributions other than the normal

we have already seen that this will require some transformations (so-called
link functions) to be applied in order for the models to be sensible

What was our approach so far?

we looked at special cases (Poisson, Bernoulli, binomial & gamma)

What do we do next?

introduce a unifying framework for distributions allowed in GLMs

formulate GLMs and introduce associated inferential methods in the general
case, rather than looking at each type of GLM separately — very neat!
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The distribution of a random variable Y , dependent on a parameter θ, is
said to be in the exponential family if it can be written as

fθ(y) = exp
(
a(y)b(θ) + c(θ) + d(y)

)
,

where a, b, c and d are fixed functions.8

fθ can be either probability density function (if Y is continuous-valued) or
probability mass function (if Y is discrete-valued)

note there is only a single parameter, θ — we can consider distributions with
more parameters, then regarding some of these as nuisance parameters9

if a(y) = const. · y , then the distribution is in the so-called canonical form,
with canonical link b(·) (which has some desirable theoretical properties)

8this is in fact just one way to define the exponential family, following Dobson & Barnett (2008) —
alternative definitions are equivalent, but sometimes more explicit regarding nuisance parameters

9parameters not of primary interest to us, treated as constants — e.g. σ2 in linear regression
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Exponential family — examples

Among others, the following distributions are members of the exponential family:

Po(λ)

N (µ, σ2), where σ2 is regarded as nuisance parameter

Bern(π)

Bin(n, π), where n is regarded as nuisance parameter

G(ν, θ), where ν is regarded as nuisance parameter
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Proof that Po(λ) is in the exp. family (in class)
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Proof that Bin(n, π) is in the exp. family (in class)
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Exponential family — mean and variance

GLMs allow for any distribution from the exponential family for the response
variable (see next chapter)

in order to introduce the estimation method for general GLMs, we need some
general theoretical properties of a distribution in exponential family form

For a random variable Y in exponential family form,

fθ(y) = exp
(
a(y)b(θ) + c(θ) + d(y)

)
,

we have that

(i) E
(
a(Y )

)
= −c′(θ)

b′(θ)

(ii) Var
(
a(Y )

)
= b′′(θ)c′(θ)−c′′(θ)b′(θ)

[b′(θ)]3
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Proof of (i) (in class)
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Proof of (ii) (in class)
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Example — mean and variance of the Poisson distribution (in class)
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Chapter 4: The class of
generalised linear models

4.1 The class of generalised linear models
4.2 The special case linear regression
4.3 Poisson regression
4.4 Logistic regression
4.5 Gamma regression
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We now introduce the class of GLMs, which...

...provides a unifying umbrella for important statistical modelling techniques
such as logistic regression, Poisson regression and also linear regression

...allows us to develop general methods that apply to each special case
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A generalised linear model (GLM) consists of three components:

1. a distribution from the exponential family, in its canonical form,
for the independent response variables Y1, . . . ,Yn:

fθi (yi) = exp
(
yib(θi) + c(θi) + d(yi)

)
,

2. a linear predictor, i.e. a linear combination of a set
of explanatory variables,

ηi = β0 + β1xi1 + . . .+ βpxip, i = 1, . . . , n

3. an invertible and differentiable link function g such that

g
(
E(Yi)︸ ︷︷ ︸

µi

)
= ηi
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Remarks on the definition — Part I

g
(
µi
)
= g

(
E(Yi)

)
= β0 + β1xi1 + . . .+ βpxip, i = 1, . . . , n

This formulation extends basic linear regression in two ways:

(potentially) non-Gaussian response variable Yi

(potential) use of link function g

We will sometimes use matrix notation to simplify things:

g
(
µ
)
= Xβ = η,

with design matrix X as in linear regression. Here g is applied componentwise.
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Remarks on the definition — Part II

Since the link function is invertible, we can also write

µi = E(Yi) = g−1(β0 + β1xi1 + . . .+ βpxip)

In particular, this allows us:

to display the fitted model in an “Y against x” scatter plot of the data

in other words, to regard E(Y ) as a function of the x variables

to do prediction based on a fitted GLM
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Remarks on the definition — Part III

In many cases we’ll have that µi = θi , where θi is the parameter of the
distribution in its exponential family form, e.g. in Poisson regression.

However, in general µi can be some function of θi — gamma regression is one
example where µi ̸= θi .
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So, given some data, how do I specify my GLM?

first choose a distribution for the response

the same type of distribution must be used for each Yi

(i.e., you can’t have Y1 ∼ N and Y2 ∼ G)

the type of data at hand will suggest appropriate distributions
(e.g., binary data⇝ Bernoulli, count data⇝ Poisson, etc.)

the link function g is also chosen as part of the model specification,
and can be any function that is differentiable & invertible

there is usually more than just one adequate function g that can be used
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GLMs in R (a brief overview)

In R, GLMs can be fitted using the function glm, which has the following form:

glm(formula=..., family=...(link=...))

The formula component is analogous as in case of lm
(e.g. formula=y∼x for response Y and linear predictor β0 + β1x)

With family, the distribution assumed for the response is specified.
(e.g. family=poisson(...))

With link, the link function is specified.
(e.g. link="log")

If no link function is specified, then by default the canonical link function for
the given exponential family distribution is used (see next slide).

slide 97



The canonical link functions for the distributions of interest to us are:

distribution canonical link

normal g(µ) = µ (“identity link”)
Poisson g(µ) = log(µ) (“log link”)
Bernoulli/binomial g(µ) = log(µ/(1− µ)) (“logit link”)
gamma g(µ) = 1/µ (“inverse link”)

Using the canonical link function simplifies inference in GLMs, but alternative link
functions can be used as well.
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Chapter 4: The class of
generalised linear models

4.2 The special case linear regression
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The (standard) linear regression model,

µi = E(Yi) = β0 + β1xi1 + . . .+ βpxip,

is a (very simple) GLM, where

(i) the response variable is (commonly assumed to be) normally distributed

(ii) the link function is the identity link (g(µ) = µ)

for this special case, we will later see that the much more generally derived
GLM estimation method reduces to ordinary least squares

R code for the case p = 1:

glm(y~x,family=gaussian)

(which gives the same β̂ as lm(y∼x), but is a different function — in
particular, the output is slightly different)
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Making use of the link function

Assume that Yi ∼ N (µi , σ
2) with a suspected true relationship to xi of the form10

µi = E(Yi) = β0xβ1
i1

this isn’t a linear regression model, and also can’t be converted into a linear
regression model using variable transformation

however, applying the log link, g(µ) = log(µ), to the model eq. we obtain

g
(
E(Yi)

)
= log

(
E(Yi)

)
= log(β0)︸ ︷︷ ︸

=β∗
0

+β1 log(xi1)︸ ︷︷ ︸
=x∗i1

this is a perfectly valid GLM!
⇝ estimate β∗

0 and β1 using GLM machinery (normal response & log link)
⇝ obtain estimate β̂0 by back-transforming: β̂0 = exp(β̂∗

0 )

10there could e.g. an economic/biological/medical/etc. theory that motivates exactly this formulation
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Below are data simulated from E(Yi) = β0xβ1
i = 2x0.5

i1
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Fitting the GLM from the previous slide11 gives:

β̂∗
0 = 0.686 ⇒ β̂0 = exp(β̂∗

0 ) = 1.986

β̂1 = 0.491

11glm(y∼log(x),family=gaussian(link="log"))
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A second example of how the link function can be utilised

Now suppose that Yi ∼ N (µi , σ
2) with a suspected relationship to xi of the form

µi = E(Yi) =
β0

β1 − xi1

again, this model can’t be fitted using ordinary least squares

however, applying the inverse link function, g(µ) = µ−1, we obtain

g
(
E(Yi)

)
=
(
E(Yi)

)−1
=

β1

β0︸︷︷︸
=β∗

0

− 1
β0︸︷︷︸
=β∗

1

xi1

again this is a perfectly valid GLM!
⇝ estimate β∗

0 and β∗
1 using GLM machinery

⇝ obtain estimates β̂0 and β̂1 by back-transforming
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Below are data simulated from E(Yi) =
β0

β1−xi
= 2

2.5−xi1
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Fitting the GLM from the previous slide12 gives:

β̂∗
0 = 1.237, β̂∗

1 = −0.489

⇒ β̂0 = −1/β̂∗
1 = 2.047, β̂1 = −β̂∗

0 /β̂
∗
1 = 2.532

12glm(y∼x,family=gaussian(link="inverse"))

slide 104



Purposes of the link function

In the previous two examples, we saw that in some cases, the purpose of using a
link function is simply to convert a non-linear model into a linear model.

The other, more common usage of link functions aims at meeting range
restrictions, e.g. making sure that the mean of a Poisson response is positive.
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Chapter 4: The class of
generalised linear models

4.3 Poisson regression
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The Poisson GLM13, with canonical link, i.e. g(µ) = log(µ), is

log
(
E(Yi)

)
= β0 + β1xi1 + . . .+ βpxip

⇔ E(Yi) = eβ0+β1xi1+...+βpxip

where the Yi are independently Poisson distributed.

R code for the case where p = 1:

glm(y~x,family=poisson)

Other link functions can be used — implemented in the R function glm are:

g(µ) = log(µ)

g(µ) = µ

g(µ) =
√
µ

In practice, the canonical (log) link is almost always used.

13also known as Poisson regression
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Poisson GLM fitted to Bundesliga matches (season 2018/19)
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> mod<-glm(goals~mvdiff,family=poisson)

> mod$coeff

(Intercept) MWdiff

0.416864 0.001078
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Forecasting Bundesliga matches

If for a moment we’re willing to assume that our Poisson GLM is a good model14,
then we can now make probabilistic forecasts of Bundesliga matches.

Example from the next matchday:

Schalke’s market value: 57

Bayern’s market value: 879

market value difference: -822 (from Schalke’s perspective)

⇝ goals by Schalke ∼ Po
(
e0.4169+0.0011·(−822)) = Po

(
e−0.487) = Po

(
0.614

)
⇝ goals by Bayern ∼ Po

(
e0.4169+0.0011·822) = Po

(
e1.321) = Po

(
3.748

)

14which it isn’t, it’s too simple, many important covariates are missing
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0 1 2 3 4 5 6
0 0.013 0.048 0.090 0.112 0.105 0.079 0.049
1 0.008 0.029 0.055 0.069 0.064 0.048 0.030
2 0.002 0.009 0.017 0.021 0.020 0.015 0.009
3 0.000 0.002 0.003 0.004 0.004 0.003 0.002
4 0.000 0.000 0.001 0.001 0.001 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table: Probabilities of match outcomes (Schalke goals in rows, Bayern goals in columns).

Derived probabilities:

of Schalke winning the match: 0.026

of a draw: 0.064

of Bayern winning the match: 0.910
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Interpretation of the regression coefficients

Consider a simple Poisson GLM of the form:

E(Yi) = eβ0+β1xi1 (1)

What’s the interpretation of β1?

Recall that, in simple linear regression, E(Yi) = β0 + β1xi1, an increase in xi1 by
1 (unit) adds β1 to E(Yi).

This is what happens when in (1) the covariate value xi1 increases by 1 unit:

eβ0+β1(xi1+1) = eβ0+β1xi1+β1 = eβ0+β1xi1 · eβ1

In other words, an increase in xi1 by 1 changes E(Yi) by the factor eβ1 .

⇝ additive change in covariate leads to multiplicative change in response

⇝ the exact effect of a change depends on the level of the response

⇝ the interpretation is not exactly intuitive
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Chapter 4: The class of
generalised linear models

4.4 Logistic regression
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Bernoulli response variables

consider now the case where the response Yi is a Bernoulli trial with
success probability πi (⇝ Donner party example)

this time, we need a function g which within the model formulation

g
(
E(Yi)︸ ︷︷ ︸
=µi=πi

)
= ηi = β0 + β1xi1

guarantees that πi ∈ [0, 1] (and analogously for general p)

in other words, g−1 needs to be a mapping from R to [0, 1]

we would like g−1 to be such that
• its image is the entire interval [0, 1]
• an increase in ηi leads to an increase in θi = g−1

(
ηi
)
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The logit link

The inverse logit link function,

logit−1 : R −→ [0, 1]

η 7→ exp(η)

exp(η) + 1

is strictly monotonically increasing with

lim
η→−∞

logit−1(η) = 0 and lim
η→∞

logit−1(η) = 1.

Its inverse function is the logit link,

logit(µ) = log

(
µ

1− µ

)
,

i.e. the canonical link function for the binomial distribution.
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the function g(µ) = logit(µ) = log
(

µ
1−µ

)
is called the logit function

the function g−1(η) = logit−1(η) = exp(η)
exp(η)+1 is the inverse logit function15

15also known as the logistic function (I prefer “inverse logit” to contrast it with the logit function)
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Bernoulli GLM (logistic regression)

The Bernoulli GLM, with canonical link16, i.e. g(µ) = logit(µ), is

logit
(
E(Yi)

)
= β0 + β1xi1 + . . .+ βpxip,

⇔ E(Yi) =
eβ0+β1xi1+...+βpxip

eβ0+β1xi1+...+βpxip + 1
,

where the Yi are independently Bernoulli distributed.

Again, other link functions can be used — implemented in glm are:

g(µ) = logit(µ)

g(µ) = probit(µ)

g(µ) equal to the quantile function of the Cauchy distribution

In R, logit and inverse logit are simply qlogis and plogis, respectively.

16 in this case usually referred to as logistic regression
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Some illustrations of how the function logit−1(β0 + β1xi1
)

can look like:

0 2 4 6 8 10

β0=−2,  β1=2

0
0.
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5
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0
0.
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Logistic regression in the Donner party example
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> mod<-glm(survival~age,family=binomial)

> mod$coeff

(Intercept) age

0.81732676 -0.03236981
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Interpretation of the model parameters

interpretation of the estimated regression coefficiencts again isn’t as
straightforward as with linear regression models

ideally, we’d like to make statements such as:

“If x increases by 1 unit, then ... (?)”

to complete this sentence, we first define the odds (of success),

odds(success) =
Pr(success)

Pr(no success)

for example, if your chance of passing the exam is 90%, then your odds are
9/1 (“9 to 1” — you pass in 9 out of 10 cases)
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Consider now the so-called odds ratio:

odds ratio =
odds(success for x + 1)

odds(success for x)

For the logistic regression model E(Y ) = logit−1(β0 + β1x), we have:

odds(success) =

odds ratio =

Interpretation in the Donner Party example:
exp(β̂1) = exp(−0.0324) = 0.968, i.e. the odds of survival decrease by a
factor 0.968 if age increases by 1 (year)
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Logistic regression with quad. predictor in the Donner party example
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> mod<-glm(survival~age+I(age^2),family=binomial)

> mod$coeff

(Intercept) age I(age^2)

-0.163558 0.105413 -0.002995
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Bernoulli response & probit link

for Bernoulli responses, the probit link is also popular

the inverse of the probit link is simply the cumulative distribution function of
the standard normal distribution:

probit−1(η) = FN (0,1)(η) =

∫ η

−∞
fN (0,1)(z)dz

the probit link hence is the quantile function of the standard normal

in R, probit and inverse probit are simply qnorm and pnorm, respectively
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Logit vs. probit link

preference which of the two is used tends to vary by discipline
(e.g. economists often use the probit link)

in practice, it usually makes little difference which of the two is used

−4 −2 0 2 4

η

g−1
(η

)

0
0.

5
1

inverse logit
inverse probit
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Donner party example — logit vs. probit
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> mod<-glm(survival~age+I(age^2),family=binomial)

> mod$coeff

(Intercept) age I(age^2)

-0.163557749 0.105412918 -0.002994803

> mod<-glm(survival~age+I(age^2),family=binomial(link="probit"))

> mod$coeff

(Intercept) age I(age^2)

-0.08565929 0.06294872 -0.00178696
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Binomial GLM (still logistic regression)

consider a response Yi which is the sum of n indep. Bernoulli trials, each
with success probability πi , such that Yi ∼ Bin(ni , πi) (⇝ beetle example)

the binomial distribution is a member of the exponential family, with nuisance
parameter ni and canonical link the logit

in a binomial GLM, we model the (expected) proportion of successes:

g
(
E(Yi/ni)︸ ︷︷ ︸

=πi

)
= β0 + β1xi1 + . . .+ βpxip,

where g could for example be the logit or the probit link

a Bernoulli GLM is a special case of a binomial GLM (where ni = 1 for all i)

when using glm in R, unless you’re fitting a Bernoulli GLM, you have to
provide information on the ni
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Logistic regression with binomial response — beetle example

Using the command glm(cbind(y,n-y)∼x,family=binomial), fitting the GLM

logit
(
πi
)
= logit

(
E(Yi/ni)

)
= β0 + β1xi1

to the beetle data gives β̂0 = −14.82 and β̂1 = 0.25. (significant at the 1% level)
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Note that it’s equivalent to fit a Bernoulli GLM where the faith of each individual
beetle is treated as one data point.
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Chapter 4: The class of
generalised linear models

4.5 Gamma regression
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Some preliminary remarks

gamma regression can be useful when modelling strictly positive response
variables (e.g. income, rent, price, etc.)

recall that for the gamma distribution, defined using ν (shape) and θ (scale),
mean and variance are given by νθ and νθ2, respectively

the gamma distribution can be written in exponential family form by
regarding ν as a nuisance parameter (think of σ2 in linear regression)

in a gamma GLM, we again model the mean as a function of covariates,
assuming a fixed (nuisance) shape ν

canonical link: g(µ) = 1
µ

, the inverse link

note that the canonical link unfortunately is not range-preserving, i.e. it does
not guarantee that the resulting mean of the gamma distribution is positive
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Gamma GLM (gamma regression)

The gamma GLM, usually referred to as gamma regression, with cano-
nical link, i.e. g(µ) = 1

µ
, is(

E(Yi)
)−1

= β0 + β1xi1 + . . .+ βpxip,

⇔ E(Yi) =
1

β0 + β1xi1 + . . .+ βpxip
,

where the Yi are independently gamma distributed.

Again, other link functions can be used — implemented in glm are:

g(µ) = µ−1

g(µ) = log(µ)

g(µ) = µ

Out of these only the log link is range-preserving, and therefore this link is usually
used in practice (despite theoretical advantages of the canonical link function).
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The role of ν
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Effectively, ν is the analogue to σ2 in linear regression models:

we’re not modelling ν using covariates (it’s a nuisance parameter)

but ν does affect the distribution — the plots here illustrate possible shapes
of the distribution (around a mean of 1) that result from the value of ν

thus, ν determines the shape — but note it also affects the variance:

Var(Yi) = νθ2
i =

1
ν
E(Yi)

2
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Some properties of the gamma GLM

The model implies a constant coefficient of variation (CV):

CV(Yi) =
sd(Yi)

E(Yi)
=

√
νθi

νθi
= ν−0.5 = const.,

which is something that is indeed often found in practice17. Put differently, gamma
GLMs by default accommodate heteroscedasticity.

The gamma distribution is right-skewed (i.e. has a heavy right tail), which often
fits nicely to real data (e.g. income data).

The exponential distribution is the special case of the gamma distribution where
ν = 1 — hence no additional “exponential GLM” required.

17variability in observations increases linearly in mean
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Gamma GLM in the Lego example (inverse link)

> mod<-glm(price~pieces,family=Gamma)

> mod$coeff

(Intercept) pieces

3.104e-02 -1.569e-05

> summary(mod)

[...]

(Dispersion parameter for Gamma family taken to be 0.3207701)

The dispersion parameter displayed here is related to ν as follows:

ν =
1

dispersion

Thus, the model fitted here is

E(pricei) =
1

0.031− 0.000016 · piecesi
,

with price being gamma distributed with shape ν̂ = 1
0.321 = 3.117.
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Now that didn’t work so well...
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Gamma GLM in the Lego example (log link)

> mod<-glm(price~pieces,family=Gamma(link="log"))

> mod$coeff

(Intercept) pieces

2.794996 0.001821

> summary(mod)

[...]

(Dispersion parameter for Gamma family taken to be 0.1157603)

The model fitted here is

E(pricei) = e2.795+0.0018·piecesi ,

with price being gamma distributed with shape ν̂ = 1
0.116 = 8.639.
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looks much better!!

however, linear regression with a quad. predictor would here also be just fine
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A second real-data example to further illustrate gamma GLMs

ID income age gender

1 4750 58 Female
2 3254 36 Female
3 6500 54 Male
4 2600 58 Female
5 850 34 Male
...

...
...

...

718 4400 36 Male

Table: Income data for 718 individuals in Germany in 2006.
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Scatterplot income vs. age
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⇝ looks like the response distribution is right-skewed...
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Gamma GLM in the income example (log link)

> mod<-glm(income~age,family=Gamma(link="log"))

> mod$coeff

(Intercept) age

7.48755268 0.01337986

> summary(mod)

[...]

(Dispersion parameter for Gamma family taken to be 0.2218875)

The model fitted here is

E(incomei) = e7.488+0.0134·agei ,

with price being gamma distributed with shape ν̂ = 1
0.222 = 4.507.
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Illustration of the fitted response distribution
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Gamma regression in the media: Drosten study, version 1
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Media coverage of the Drosten study
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From the revised version of the Drosten study
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Current status and what’s next

Main learning outcomes so far:

overview of scenarios in which linear regression won’t work well

how these scenarios can be addressed using the GLM framework:
⇝ flexible distributional assumption for response variable
⇝ use of link function

the main special cases (normal, Poisson, Bernoulli/binomial, gamma):
⇝ model formulation
⇝ possible link functions
⇝ main properties

how to fit GLMs in R using the function glm(), including the main syntax

Things we want to understand next:

what’s behind glm(), i.e. how does the estimation actually work?

properties of the estimators

how to select between competing models

how to check if a model is actually a good model
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Chapter 5: Parameter estimation and inference

5.1 Why not simply least squares?
5.2 Maximum likelihood estimation
5.3 Maximising the GLM likelihood
5.4 Estimator properties and uncertainty quantification
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Chapter 5: Parameter estimation and inference

5.1 Why not simply least squares?
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Heteroscedasticity in GLMs

in a GLM, the variance of the response Yi is, in general, not constant
(in linear regression, constant variance was one of the main assumptions)

for example, in a Poisson GLM, E(Yi) = Var(Yi) = eβ0+β1xi1 ̸= const.
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Figure: Data simulated from a Poisson GLM.
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The data points should hence be weighted according to their variances18:

high variance⇝ little information (large residuals expected)⇝ small weight

low variance⇝ much information (small residuals expected)⇝ large weight

So we’d like to use weighted least squares, but we have a catch–22:

need to know the variances to calculate weights and hence fit the model...

...but need to know the model in order to calculate the variances

Let’s start with maximum likelihood estimation instead — however, later on, we
will see that this actually matches weighted least squares estimation.

18put differently, the distances in the sum of squares need to be seen relative to the error variance
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Ordinary least squares vs. maximum likelihood

In order to illustrate the non-optimality of ordinary least squares for GLMs,
I simulated 1000 data sets from the Poisson GLM

E(Yi) = eβ0+β1xi = e0.5+0.8xi1 , i = 1, . . . , 400.

The table shows performance measures of the 1000 ordinary least squares
estimates (LSEs) and of the 1000 max. likelihood estimates (MLEs) obtained.

LSEs MLEs
bias std. dev. bias std. dev.

β̂0 -0.004 0.074 -0.001 0.048
β̂1 0.002 0.034 0.000 0.022

Both estimators are unbiased, but the precision is much higher for the MLE!
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Chapter 5: Parameter estimation and inference

5.2 Maximum likelihood estimation
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Parameter estimation — why maximum likelihood?

maximum likelihood (ML) estimation is an approach for fitting a model to data
(i.e. estimating its parameters)

key idea: good parameter estimates make the observed data look plausible

ML estimation: select those parameters for which the model has the highest
likelihood19 of having generated the observed data

ML estimation...
• ...is intuitively appealing,
• ...is practically feasible in many cases,
• ...and has desirable theoretical properties

19= probability, chance
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Maximum likelihood estimation — how does it work?

Given data (yi , xi1, . . . , xip), i = 1, . . . , n, we regard the joint density/probability of
all obs. as a function — the likelihood function — of the parameter vector:

L(β) = L(β0, . . . , βp) = fβ(y1, . . . , yn)

The maximum likelihood estimate (MLE) is the vector β that maximises L(β).

Since log is strictly monotone20, we have that

β maximises L(β) ⇔ β maximises ℓ(β) = logL(β)

Maximising ℓ(β) is often easier in practice.

20 i.e. x < y ⇔ log(x) < log(y)
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Numerical maximisation of the (log-)likelihood

there is usually no closed-form (i.e. analytical) solution for the MLE of a GLM

instead, numerical search algorithms are used — general workflow:

• guess the value of the parameter vector as β(0) (initial value)

• obtain improved guess β(1) based on β(0)

• obtain improved guess β(2) based on β(1)

• ...
• terminate algorithm when changes in ℓ(β) are negligible

on the next slides, we graphically illustrate the Newton-Raphson method
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Analytic derivation of Newton-Raphson

For simplicity, let’s consider a univariate parameter β. We then need to solve

∂ℓ

∂β
= ℓ′(β) = 0

A Taylor expansion about an initial guess β(0) gives

0 = ...

which gives us

...
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β ≈ β(1) = β(0) −
ℓ′(β(0))

ℓ′′(β(0))
.

given a guessed β(0) for the MLE, this update gives us an improved β(1)

from β(1), we then calculate β(2), from which we calculate β(3), etc.

this repeated application of the update is the Newton-Raphson method

the algorithm stops when ℓ′(β(r)) ≈ 0

in general, this may converge to a local rather than the global maximum!

however, for GLMs, the likelihood function is strictly concave — such that
there are no local maxima — when using the canonical link function

slide 159



For a univariate β, the Newton-Raphson method involves the update

β(r+1) = β(r) −
ℓ′(β(r))

ℓ′′(β(r))
, r = 0, 1, 2, . . . .

For a parameter vector β, the Newton-Raphson method looks as follows:

β(r+1) = β(r) − H(β(r))
−1 ∂ℓ

∂β(r)
, r = 0, 1, 2, . . . ,

where H(β(r)) is the Hessian matrix of the log-likelihood function.

Terminology and notation (for given β):

the gradient S(β) =
(

∂ℓ
∂β0

, . . . , ∂ℓ
∂βp

)
is called score statistic

J (β) = −H(β) is the observed Fisher information

With this notation, the scheme becomes

β(r+1) = β(r) + J (β
(r))−1S(β(r))
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In practice, J (β) is often replaced by the expected Fisher information,
I(β) = E

(
J (β)

)
, leading to the scheme:

β(r+1) = β(r) + I(β(r))−1S(β(r)).

This is the so-called method of scoring.

Possible advantages:

expected Fisher information is often easier to calculate — in particular21:

I(β) = E

[(
∂ℓ

∂β

)(
∂ℓ

∂β

)t
]
,

in other words information on first derivatives is sufficient!

better numerical properties/more stable

21this is in fact a standard result in ML theory — covered e.g. in “Foundations of Statistical Inference”
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Towards a general strategy for fitting GLMs

Making use of the exponential family form, we will now:

derive the score statistic S(β) for a (general) GLM

(from this) derive the expected Fisher information I(β) for a (general) GLM

With these at hand, we can then implement the method of scoring:

1. choose initial value β

2. while S(β) ̸= 0, repeat

β ← β + I(β)−1S(β)

3. return β

slide 162



Chapter 5: Parameter estimation and inference

5.3 The GLM likelihood and its numerical maximisation
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Likelihood of a GLM

For a GLM,

g(µi) = g
(
E(Yi)

)
= ηi = β0 + β1xi1 + . . .+ βpxip,

with fθi (yi) = exp
(
yib(θi) + c(θi) + d(yi)

)
, the log-likelihood is given by

ℓ(β) = logL(β) = log fβ(y1, . . . , yn)

= log
n∏

i=1

fβ(yi)

= log
n∏

i=1

exp
(
yib(θi) + c(θi) + d(yi)

)
=

n∑
i=1

(
yib(θi) + c(θi) + d(yi)

)︸ ︷︷ ︸
=ℓi
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Likelihood of a GLM

ℓ(β) =
n∑

i=1

(
yib(θi) + c(θi) + d(yi)

)
To see that ℓ(β) is indeed a function of β, note that:

β determines the vector of linear predictors η...

...which in turn determines the vector of expected values µ...

...which in turn determines the vector θ appearing in the exp. family form22...

...based on which the above expression can be calculated

Thus,

ℓ(β) = ℓ

(
θ
(
µ
(
η(β)

)))

22where usually, but not always, µi = θi
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Score statistic and expected Fisher information for GLMs

For a GLM specified as on slide 164, let

Sj =
∂ℓ

∂βj
and Ijk = −E ∂2ℓ

∂βj∂βk
, for j, k = 0, 1, . . . , p,

here omitting the dependence on β for notational simplicity. Defining xi0 =
1 for all i , we have

(i) Sj =
∑n

i=1
yi−µi
var(Yi )

xij
∂µi
∂ηi

(ii) Ijk =
∑n

i=1
xij xik

var(Yi )

(
∂µi
∂ηi

)2
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Proof of (i) (in class)
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Proof of (i), continued (in class)
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Proof of (ii) (in class)
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Score statistic and expected Fisher information for GLMs

Defining a diagonal matrix W with entries wii =
1

var(Yi )

(
∂µi
∂ηi

)2
, we can write

I =

I00 . . . I0p

...
. . .

...
Ip0 . . . Ipp

 = Xt WX,

where X is the design matrix of the GLM.

Again utilising the wii , we further obtain

Sj =
n∑

i=1

xijwii(yi − µi)

(
∂µi

∂ηi

)−1

,

such that
S(β) =

∂ℓ

∂β
= (S0, . . . ,Sp)

t = Xt Wν,

where νi = (yi − µi)
(

∂µi
∂ηi

)−1
.
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Method of scoring for GLMs

For the method of scoring, we obtain:

β(r+1) = β(r) + I(β(r))−1S(β(r))

= β(r) +
(
Xt WX

)−1
Xt Wν

=
(
Xt WX

)−1
Xt WXβ(r) +

(
Xt WX

)−1
Xt Wν

=
(
Xt WX

)−1
Xt W

(
Xβ(r) + ν

)
=
(
Xt WX

)−1
Xt Wz, (2)

where zi = ηi + (yi − µi)
(

∂µi
∂ηi

)−1
.
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Equation (2) is used in order to set up an iterative scheme:

use some initial approximation β(0) (e.g. the LS estimate)

compute an improved β(1) based on β(0) using (2)

compute an improved β(2) based on β(1) using (2)

. . .

(repeat until convergence)

The updating scheme

β(r+1) =
(
Xt WX

)−1
Xt Wz,

with W and z as just defined, is called iteratively reweighted least squa-
res (IRLS) algorithm — a special case of the method of scoring.

Thus, in the end of the day, we see that ML estimation for GLMs boils down to
what we intuitively expected in the first place: weighted least squares!
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IRLS for Poisson GLMs

As an example, consider the basic Poisson GLM,

log(µi) = β0 + β1xi1

In this case, we have

wii =

zi =

slide 173



> set.seed(1)
> x<-runif(100,-3,3)
> y<-rpois(100,exp(0.5+0.8*x))
> X<-cbind(rep(1,length(x)),x)
>
> # function that, for given beta and x, returns W
> W<-function(beta,x){
+ eta<-beta[1]+beta[2]*x
+ return(diag(exp(eta)))
+ }
>
> # function that, for given beta, x and y, returns z
> z<-function(beta,x,y){
+ eta<-beta[1]+beta[2]*x
+ eta+y/exp(eta)-1
+ }
>
> mean(y)
[1] 3.7
> beta<-c(log(3.7),0) # initial guess for ML estimate
> for (iter in 2:10){ # run IRLS as a loop
+ beta<-as.vector(solve(t(X)%*%W(beta,x)%*%X)%*%t(X)%*%W(beta,x)%*%z(beta,x,y))
+ print(beta)
+ }
[1] 1.2426273 0.6135974
[1] 0.7238925 0.7336630
[1] 0.5101647 0.8146078
[1] 0.4792807 0.8284501
[1] 0.4787140 0.8287070
[1] 0.4787138 0.8287071
[1] 0.4787138 0.8287071
[1] 0.4787138 0.8287071
[1] 0.4787138 0.8287071
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IRLS for the basic Gaussian GLM

For some GLMs, the scheme simplifies. For example, for a Gaussian response
and the identity link, we have

wii =
1
σ2 and zi = yi ,

such that
β =

(
Xt WX

)−1
Xt Wz =

(
Xt X
)−1

Xt y

In this case, we can of course find the solution analytically — it’s simply the LSE!
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Chapter 5: Parameter estimation and inference

5.4 Estimator properties and uncertainty quantification
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Inference — overview

we now know how to fit a GLM to data, i.e. how to find the MLE β̂ of the
parameter vector β (with glm() in R doing all the hard work for us)

in practice, we usually also want to quantify the uncertainty in β̂

standard MLE theory can be applied in order to find the (approximate)
distribution of β̂, based on which we can:

• calculate CIs
• conduct hypothesis tests

we won’t provide proofs that all regularity conditions are fulfilled — these are
technical and not very interesting
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How to measure uncertainty? (simple motivating example)

Suppose that Y1, . . . ,Yn
iid∼ Po(λ). The plot below shows the log-likelihood, ℓ(λ),

for y1, . . . , y10 with ȳ = 5.3 (solid line)

for y1, . . . , y100 with ȳ = 5.3 (dashed line)

3 4 5 6 7 8

−
30

0
−

25
0

−
20

0
−

15
0

−
10

0
−

50

the amount of information and hence the curvature are higher for n = 100

the Fisher information is a measure of the curvature!
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Asymptotic behaviour and approximate distribution of the MLE

MLE theory states that for large sample sizes (i.e. n→∞),

β̂ will approximately follow a multivariate normal distribution23

the MLE is approximately unbiased

the variance-covariance matrix is the inverse expected Fisher information

Putting it all together:

For large n, the approximate distribution of the MLE of the GLM parame-
ters is obtained as

β̂ ∼ N (β, I−1),

where I = Xt WX is the expected Fisher information at the MLE.

23so that if we kept drawing samples from the true model and re-calculating β̂ for each new sample,
then the β̂s would be normally distributed
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Figure: MLEs obtained for 500 data sets simulated from the Poisson GLM where
E(Yi) = e0.5+0.8xi1 , i = 1, . . . , 400, and theoretical distribution of the MLE (contour lines).
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Confidence intervals

For n→∞, and letting Σjj denote the (j + 1)–th diagonal element of I−1 and zα
the α–quantile of the standard normal distribution, we thus have: (in class)

For reasonably large n,[
β̂j + z0.025

√
Σjj ; β̂j + z0.975

√
Σjj

]
is an approximate 95% confidence interval for βj .
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Hypothesis testing

Suppose that we want to test H0 : βj = 0 against H1 : βj ̸= 0. Then: (in class)

For reasonably large n, the following decision rule yields an approximate
significance test of H0 : βj = 0 against H1 : βj ̸= 0, at level α:

|Z | =
∣∣∣β̂j/

√
Σjj

∣∣∣ > z1−α/2 ⇝ reject H0

|Z | =
∣∣∣β̂j/

√
Σjj

∣∣∣ ≤ z1−α/2 ⇝ retain H0
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Confidence intervals and hypothesis testing in R

glm(formula = survival ~ age, family = binomial)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.81733 0.37549 2.177 0.0295 *

age -0.03237 0.01509 -2.145 0.0320 *

summary(glm(...)) in R provides us with parameter estimates and
standard errors24, such that confidence intervals can easily be calculated

it also gives us the test statistic Z and the corresponding p–value

24the standard errors given in the output here are
√
Σ00 and

√
Σ11, respectively
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GLMs with nuisance parameters

for small sample sizes, the above CIs and hypothesis tests should be used
only if Σjj doesn’t involve an additional unknown nuisance parameter

e.g. linear models and gamma GLMs involve nuisance parameters

if there is an additional unknown nuisance parameter, then the quantiles of
the standard normal need to be replaced by those of the tn−(p+1) distribution,
just like for linear models — this is done automatically in R:

glm(formula = income ~ education, family = Gamma(link = "log"))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.47987 0.18392 40.670 < 2e-16 ***
education 0.11982 0.01661 7.216 1.06e-10 ***

but note that the tn−(p+1) distribution converges to the N (0, 1) distribution,
such that for large n it doesn’t make a difference which quantiles are used
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Uncertainty quantification based on a parametric bootstrap

if we could repeatedly simulate new data from the true model, then we could
calculate the MLEs for very many simulated data sets, and quantify
estimation uncertainty based on the variation of the MLEs obtained

but we don’t know the true model...

bootstrap idea: assume that the fitted model is a
good approximation of the true model and use it to
investigate the behaviour of the estimator

more specifically, simulate data from fitted model
and refit model to simulated data

repeat this lots of times (e.g. 999 times) and estimate standard
errors and confidence intervals from the sample of estimates

slide 185



Uncertainty quantification based on (percentile) bootstrapping

> mod<-glm(survival~age,family=binomial)
>
> betas<-matrix(NA,999,2)
>
> for (boot in 1:999){
+ surv.sim<-rbinom(85,size=1,prob=plogis(mod$coeff[1]+mod$coeff[2]*age))
+ mod.boot<-glm(surv.sim~age,family=binomial)
+ betas[boot,]<-as.numeric(mod.boot$coeff)
+ }
>
> apply(betas,2,sd)
[1] 0.39653442 0.01631586
>
> sorted.betas<-apply(betas,2,sort)
> sorted.betas[c(25,975),]

[,1] [,2]
[1,] 0.08964336 -0.06898677
[2,] 1.66009397 -0.00299247

Standard errors using asymp. results: 0.37549 for β0, 0.01509 for β1

CIs using asympt. results: [0.081, 1.553] for β0, [−0.062,−0.003] for β1
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Uncertainty in mean prediction — motivation

We’ve been considering predictions of the mean of the response all the time:
for a GLM

g(µi) = ηi = β0 + β1xi1 + . . .+ βpxip,

and any given covariate values x1, . . . , xp, we predict

µ̂ = g−1(η̂) = g−1(β̂0 + β̂1x1 + . . .+ β̂pxp)

this can easily be done manually

alternatively, predict(mod,...) in R gives the η̂, from which the µ̂ can
easily be obtained by applying the inverse link function
(e.g. plogis(predict(mod,newdata=data.frame(age=20)))

predict(mod,type="response",...) directly gives the µ̂

But how can we quantify the uncertainty in the predicted mean?
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Uncertainty in mean prediction — Option 1

the easiest way to obtain an uncertainty quantification for the prediction of
the mean is as follows:

• observe that, based on the approximate normality of the estimators, the
predictor η is also approximately normally distributed (for given covariate values)

• calculate the corresponding confidence interval for the predictor
• transform this CI using the inverse link function

example logistic regression in R:

pre<-predict(mod,se.fit=T,newdata=data.frame(x=...))

then25

plogis(pre$fit+qnorm(c(0.025,0.975))*pre$se.fit})

note that this gives a CI for the mean, not for the actual observation!

25noting that predict by default gives predictions for the linear predictor, not the response
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Uncertainty in mean prediction — Option 2

the CIs from the previous slide will, in general, not be symmetric around the
predicted mean (which is no problem except that some people don’t like it...)

to obtain symmetric CIs, we need to translate the standard error estimates
for the β̂’s into a standard error estimate for µ̂

this can be achieved using the delta method26 — details not provided here

in R:

pre<-predict(mod,type="response",se.fit=T,newdata=...)

gives both point prediction and standard error for µ̂ (obtained via delta
method), from which confidence intervals can easily be calculated:

pre$fit+qnorm(c(0.025,0.975))*pre$se.fit

26which, for an approx. normally distributed β gives the variance of the approx. normal dist. of f (β)
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Uncertainty in mean prediction — Option 3

For small sample sizes, we may not want to trust the asymptotic theory.

In such a case we can use a bootstrap:

1. simulate data from fitted model and refit model to simulated data

2. predict mean under model fitted to simul. data (at covariate value of interest)

3. repeat 1. and 2. lots of times and obtain approximate confidence intervals
from the sample of predicted means
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Figure: Survival prob. with 95% CIs, logit(E(survivali)) = β0 + β1 · agei + β2 · age2
i .
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Outlook

We can now formulate GLMs, fit GLMs to data, and also interpret and further
investigate the estimated parameters.

Up next in Chapter 6:

how to choose between different plausible models
(model selection)

how to check if a chosen model captures all relevant features of the data
(model checking)
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Chapter 6: Model selection & model checking

6.1 Bias-variance trade-off
6.2 Variable selection via hypothesis testing
6.3 Akaike Information Criterion
6.4 Deviance
6.5 Residual analyses for GLMs
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The bias-variance trade-off explained in one picture

●

●

●

● ●

●

●

●

model 1

model 2

Model 1 seems too inflexible⇝ systematic pattern not captured⇝ high bias.

Model 2 seems too flexible⇝ overfitting⇝ high variance.
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Bias-variance trade-off — an illustration based on simulated data

1. simulate 100 data points from Yi = 1 + 2xi − 2x2
i + ϵi , ϵi

iid∼ N (0, 1)

2. fit the linear models

model 1: Yi = β0 + β1xi + ϵi

model 2: Yi = β0 + β1xi + β2x2
i + ϵi

model 3: Yi = β0 + β1xi + β2x2
i + β3x3

i + ϵi

model 4: Yi = β0 + β1xi + β2x2
i + β3x3

i + β4x4
i + ϵi

3. calculate, for each of the models, the integrated squared error (ISE),

ISE =

∫ (
f (x)− f̂ (x)

)2dx ,

where f (x) is the true and f̂ (x) is the estimated regression function

4. repeat 1.–3. 5000 times
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Figure: Illustration of the first 100 (of 5000) fitted regression functions, for models 1–4.
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Model selection — overview

Aim: to find the right balance between flexibility and parsimony27.

A model should be:

sufficiently flexible to capture all systematic effects...

...yet not overly flexible as to avoid accidentally modelling noise

In other words: we increase complexity of a model only if it’s worth it!

27or, in other words, the balance between overfitting and underfitting
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Model selection for GLMs — outline

We first discuss problems with repeated application of hypothesis tests.

We then consider the Akaike Information Criterion (AIC) as one example of a
generally applicable model selection criterion.

Other criteria such as the BIC and cross-validation will only briefly be mentioned.
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Chapter 6: Model selection & model checking

6.2 Variable selection via hypothesis testing
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Types of model selection within regression

Given a model formulation, say Poisson regression, model selection could mean:

1. choosing which explanatory variables to include in the model

2. deciding if polynomial and/or interaction terms are required

Model selection at a higher level:

3. choose a suitable model formulation
(e.g. linear model vs. gamma GLM, identity vs. log link, ...)
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Variable selection within regression

For 1. and 2., we could in principle use hypothesis tests.

For example, for Poisson regression, we reject H0 : βj = 0 if

|Z | = |β̂j/σ̂β̂j
| > z1−α/2

This way, we can decide for each candidate variable if it should be in the model:

H0 rejected⇝ indication that there is an effect⇝ keep variable

H0 retained⇝ no strong evidence⇝ remove variable to avoid overfitting
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We often wish to decide which of several covariates to include in a GLM.

One way to do this is to implement a backward (or forward) selection scheme.
For example, a backward selection scheme would proceed as follows:

1. fit the most complicated model, incorporating all covariates

2. for each parameter, calculate the associated p–value

3. if all p–values are below α then stop — otherwise refit the model excluding
the covariate with the highest p–value above α, and return to step 2.

(forward selection is analogous, just in the other direction)
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Variable selection for the Donner party data

We illustrate backward variable selection in the Donner party example.

The most complex model we consider is

logit
(
πi
)
= β0 + β1 · agei + β2 · age2

i + β3 · genderi + β4 · size of kini + β5 · size of kin2
i

+ β6 · agei · genderi + β7 · agei · size of kini + β8 · size of kini · genderi ,

where Yi ∼ Bern(πi) and Yi = 1 corresponds to survival of the i–th individual.
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glm(formula = survival ~ age + gender + kin + I(age^2) + I(kin^2) +
age:gender + age:kin + gender:kin, family = binomial)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.754155 2.091708 -3.229 0.001242 **
age 0.355893 0.108331 3.285 0.001019 **
gender -1.157136 1.925471 -0.601 0.547865
kin 1.354551 0.375136 3.611 0.000305 ***
I(age^2) -0.006504 0.002150 -3.026 0.002479 **
I(kin^2) -0.069048 0.018564 -3.719 0.000200 ***
age:gender 0.015283 0.056669 0.270 0.787395
age:kin -0.009188 0.006902 -1.331 0.183141
gender:kin 0.253622 0.146957 1.726 0.084380 .

⇝ remove the interaction term age/gender.
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glm(formula = survival ~ age + gender + kin + I(age^2) + I(kin^2) +
age:kin + gender:kin, family = binomial)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.742761 2.064782 -3.266 0.001092 **
age 0.353833 0.106939 3.309 0.000937 ***
gender -0.806660 1.388806 -0.581 0.561355
kin 1.334686 0.363283 3.674 0.000239 ***
I(age^2) -0.006448 0.002129 -3.029 0.002454 **
I(kin^2) -0.068278 0.018202 -3.751 0.000176 ***
age:kin -0.008405 0.006229 -1.349 0.177255
gender:kin 0.241426 0.138267 1.746 0.080797 .

Note that including interaction terms but not the corresponding main effects has
undesirable consequences, inter alia, on interpretability — usually to be avoided!

⇝ remove the interaction term age/kin.
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glm(formula = survival ~ age + gender + kin + I(age^2) + I(kin^2) +
gender:kin, family = binomial)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.961651 1.421438 -3.491 0.000482 ***
age 0.311140 0.096012 3.241 0.001193 **
gender -1.042794 1.315171 -0.793 0.427838
kin 1.050951 0.276157 3.806 0.000141 ***
I(age^2) -0.007299 0.002123 -3.438 0.000586 ***
I(kin^2) -0.060806 0.016850 -3.609 0.000308 ***
gender:kin 0.260438 0.135354 1.924 0.054339 .

⇝ remove the interaction term gender/kin.
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glm(formula = survival ~ age + gender + kin + I(age^2) + I(kin^2),
family = binomial)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.786191 1.321596 -3.622 0.000293 ***
age 0.275527 0.086491 3.186 0.001444 **
gender 1.274255 0.646112 1.972 0.048588 *
kin 0.891171 0.245333 3.632 0.000281 ***
I(age^2) -0.006313 0.001893 -3.334 0.000856 ***
I(kin^2) -0.046482 0.013674 -3.399 0.000676 ***

⇝ this is our final model.
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Are hypothesis tests sufficient?

Unfortunately, model selection using hypothesis tests brings various problems:

multicollinearity can lead to the exclusion of relevant variables

forward/backward selection may yield different models — how to choose?

multiple testing drastically increases the probability of a type I error

in fact, this kind of testing does not even constitute a valid significance test —
we’re looking at the minimum (absolute) z value, which is not N–distributed

can’t be used for all model selection problems28

may not be feasible if there’s a very large number of candidate models

28e.g. to compare E(Yi ) = β0 + β1 · xi vs. log
(
E(Yi )

)
= β0 + β1 ·

√
xi + ϵi
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Chapter 6: Model selection & model checking

6.3 Akaike Information Criterion
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Kullback-Leibler divergence

Idea: consider a quantity measuring the discrepancy ∆(M̂,M0) between fitted
model (M̂) and true model (M0), and find model that minimises this quantity.

Different discrepancy measures can be considered, but the Kullback-Leibler
divergence leads to particularly nice results — it is given by

∆(M̂,M0) = EM0 log

(
LM0

LM̂

)
,

with the subscript at E indicating the source of the randomness⇝ this is the
expectation with respect to observations drawn randomly from M0.
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Illustration (in class)
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∆(M̂,M0) = EM0 log

(
LM0

LM̂

)

⇝ this discrepancy deems a model good if, on average over many samples,
it assigns a high probability to observations generated from the true model

⇝ small values indicate that the fitted model is close to the true model

⇝ obviously, M0 is unknown, so ∆(M̂,M0) can’t be calculated

⇝ however, it can be estimated!
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The KL divergence can be written as

∆(M̂,M0) = EM0 logLM0 − EM0 logLM̂ .

For model selection, we can drop the first term since M̂ has no influence on it.

Thus, we try to maximise
EM0 logLM̂ ,

which still depends on the true model M0 (due to the expectation).

A seemingly natural estimator would be the plug-in estimator:

logLM̂
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Plug-in estimator for the relevant part of the KL divergence:

logLM̂

Unfortunately, this estimator is positively biased due to overfitting.
(the model fits the given sample better than an average sample)

Illustration: (in class)
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From the KL divergence to the Akaike Information Criterion

Akaike showed that, under several regularity conditions,

bias of the plug-in estimator ≈ number of parameters of M̂ (= K ).

Note the remarkable simplicity of this result!!

Correcting the plug-in estimator for the approximate bias, we obtain as criterion:

logLM̂ − K

For historical reasons, instead of selecting the model that maximises this quantity,
the quantity is usually multiplied by −2, leading to

−2 logLM̂ + 2K ,

which we then wish to minimise.
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For a given model, the Akaike Information Criterion (AIC) is

AIC = −2 logLM̂ + 2K ,

where LM̂ is the maximal value of the log-likelihood of the model. Given a
set of candidate models, we choose the one with the smallest AIC.

the AIC rewards model fit (2 logLM̂ ) yet penalises complexity (2K )

this reflects the trade-off between flexibility29 and parsimony30

the AIC prefers a complex model over a simple model only if the
log-likelihood improvement outweighs the increase in complexity

R gives the AIC of a GLM in the output of summary(glm(...))

29rewarding it: complex models can fit the data better & hence lead to smaller −2 logLM̂
30by penalising complexity
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AIC-based selection of a model for the Donner party data

We illustrate AIC-based model selection in the Donner party example.

The most complex model we consider again is

logit
(
πi
)
= β0 + β1 · agei + β2 · age2

i + β3 · genderi + β4 · size of kini + β5 · size of kin2
i

+ β6 · agei · genderi + β7 · agei · size of kini + β8 · size of kini · genderi
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There are 28 = 256 submodels of the full model from the previous slide.

AIC values for what based on previous considerations are the most plausible
candidate models, plus the two extreme cases as benchmarks:

age gender kin age2 kin2 age/gen. age/kin gen./kin AIC

� � � � � � � � 92.847

� � � � � � � 90.921

� � � � � � � 92.821

� � � � � � � 94.177

� � � � � � 90.964

� � � � � � 92.226

� � � � � � 94.281

� � � � � 93.108

� � � � 95.413

119.258

⇝ chosen model includes all variables except the interaction age/gender.
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The importance of checking the (absolute) goodness of fit

An AIC value such as 90.921, taken on its own, doesn’t tell us anything — it is of
interest only when compared to AICs of competing models.

The AIC measures the relative goodness of fit (relative to competing models).

This means that even if we consider hundreds of candidate models, the selected
model might still be a bad one.

It’s important to also investigate the absolute goodness of fit, for example using
residual analyses (later in this chapter!).
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Selection bias

Too much selection can do more harm than good — such an “overdose of
selection” leads to a problem called selection bias.

To illustrate the problem, suppose that 100 candidate models, M1, . . . ,M100, are
considered, and that the models are ranked in terms of their AIC values:

rank model AIC values

1 M44 AICM44

2 M13 AICM13

3 M92 AICM92

4 M28 AICM28

...
...

...
100 M7 AICM7

where AICM44 < AICM13 < AICM92 < AICM28 < . . . < AICM7 .
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If these AIC values were the actual KL discrepancies between true model and
fitted model, then this would all be fine.

However, recall that we’re only estimating the KL discrepancies. The ranked
list of models with the actual KL discrepancies will (in general) look different, say

rank model KL discrep.

1 M28 KLM28

2 M67 KLM67

3 M13 KLM13

4 M44 KLM44

...
...

...
100 M50 KLM50

where KLM28 < KLM67 < KLM13 < KLM44 < . . . < KLM50 .
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The KL–based list ranks the models from best to worst, whereas the AIC-based
list ranks the models from apparently best to apparently worst.

For some models, the KL discrepancy will be overestimated by the AIC, whereas
for others it will be underestimated, potentially leading to ranks being swapped.

In other words, due to particular details of the sample at hand, the AIC will rank
some models too high (they get lucky!), and others too low (bad luck!).

Consequences:

model selected based on AIC appears to perform better than it really does31

variables will be included because “they got lucky”32

The more models we consider, the bigger a problem this becomes.

31such that we may be overly confident in our predictions
32note the analogy to p–hacking!
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Model averaging

Model averaging addresses the uncertainties involved in model selection.

Acknowledging that several models may describe the data about equally well, it is
natural to build predictions based on averaging predictions from several models.

A possible multi-model prediction of a future value Y of the response is

ŷ =
H∑

h=1

whŷ (h),

where ŷ (h) is the prediction under Mh, and where wh are Akaike weights33,

wh =
e−0.5∆AICMh∑H
j=1 e−0.5∆AICMj

,

with ∆AICMh the difference in AIC values between Mh and the “best” model.

33these can be interpreted as the probabilities of the corresponding model being the best
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An alternative model selection criterion: the BIC

The AIC tends to be too generous with respect to increasing model complexity.

The Bayesian Information Criterion (BIC) is a more conservative alternative:

BIC = −2 logLM̂ + log(n) · K

looks similar to AIC, but has a completely different theoretical foundation34

complexity penalty is higher when n ≥ 8

the BIC thus tends to select simpler models

34the AIC attempts to minimise discrepancy between model and reality, while the BIC seeks the model
which is most likely to be true
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Cross-validation as another approach to model selection

Cross-validation considers the criterion

CV =
n∑

i=1

(
yi − ŷ−i

)2
,

where ŷ−i is the prediction of yi using the GLM fitted to all data except (xi , yi).

the i–th observation is regarded as a future observation

the GLM is fitted to the other n − 1 observations

then we check the prediction of yi under this fitted model

this is repeated for all i = 1, . . . , n

From a set of candidate models, we choose the one giving the smallest CV.
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Practical recommendations

there is no universally applicable strategy that can guarantee a
satisfactory outcome

model selection criteria point us in some direction, but taken on their own
don’t provide much evidence for anything

in practice, model selection involves:
• thinking about which candidate models to consider — if possible, model

formulation should be aligned with any relevant theory
• intuition and, sometimes, pragmatism
• it is always advisable to thoroughly investigate (all) strong candidate models35

up next: model checking, where we discuss the last point in more detail

35 in order to get a better understanding of the different models’ performances, which will help making
an informed choice between candidate models, taking the study aim into account
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Chapter 6: Model selection & model checking

6.4 Deviance
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For a GLM under consideration, the likelihood ratio statistic is given as:

λ =
L(θ̂sat)

L(θ̂sim)
,

where, within the model class defined by the distributional assumption,

L(θ̂sat) denotes the likelihood under the saturated (or full) model,
where one parameter is estimated for each of the n observations

L(θ̂sim) is the likelihood under the simplified model (the GLM),
where say only two parameters are used to explain n observations

Example Poisson GLM (with one covariate):

Yi ∼ Po(θi)

θ̂sat = (θ̂1,sat, . . . , θ̂n,sat) = (y1, . . . , yn)

θ̂sim = (θ̂1,sim, . . . , θ̂n,sim) = (eβ̂0+β̂1x1 , . . . , eβ̂0+β̂1xn)
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Simple properties of the likelihood ratio statistic

λ =
L(θ̂sat)

L(θ̂sim)

λ measures the discrepancy between simplified model and saturated model

L(θ̂sim) can’t be higher than L(θ̂sat), hence λ ≥ 1

if the simplified model is adequate, then λ shouldn’t be “much higher” than 1,
indicating that the saturated model doesn’t explain the data much better
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Likelihood ratio statistic in the football example

Recall the Poisson GLM fitted to the football data:

goalsi
iid∼ Po(λi), λi = exp

(
β̂0 + β̂1 ·mvdiffi

)
The λi , i = 1, . . . , 612, hence are determined by (only) two model parameters.

Saturated model: estimate λ̂i for each i = 1, . . . , 612, without imposing any
structure such as a regression model⇝ 612 parameters!

Using the λi implied under the two different models, we obtain

λ =
L(λ̂sat)

L(λ̂sim)
=

e−591.81

e−957.02 = e365.21
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All very well, but what does a value like

λ = e365.21

really tell us??

we initially noted that if the simplified model is adequate, then λ shouldn’t be
much higher than 1

but what is “much higher than 1”?

whether or not the value of λ is large depends on:
i) the sample size
ii) the complexity of the simplified model36

what we need is a scale that takes both into account

36and hence the difference in the number of parameters — here the saturated model has 610
additional parameters!
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Deviance

Considering a simple transformation of λ, called the deviance,

D = 2 log λ = 2
(
logL(θ̂sat)− logL(θ̂sim)

)
,

we obtain such a scale:

Suppose that a GLM with p + 1 parameters is fitted to n observations.

Under the null hypothesis that the GLM considered adequately des-
cribes the data, we then have

D = 2 log λ ∼ χ2
n−(p+1),

approximately for large n.
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Likelihood ratio test (LRT) based on the deviance

the chi-squared distribution is the scale at which we can measure the
(transformed) likelihood ratio statistic

clearly, the worse the model, the larger is λ, hence the larger is D — thus, a
large D indicates that the GLM does not explain the data well

if the observed D is not consistent with its approx. theoretical distribution,
then we reject the null hypothesis that the GLM describes the data well

we reject the GLM at the α significance level (usually 0.05) if the deviance D
is larger than the (1− α)–quantile of the χ2

n−(p+1) distribution

this test is called likelihood ratio test (LRT)

in R, summary(glm(...)) gives the deviance (see “Residual deviance”)
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Deviance and LRT in the football example

In the football example, we had λ = e365.21, such that

D = 2 log λ = 730.42

Under the null hypothesis that the GLM describes the data well, D ∼ χ2
610.37

The p–value, i.e. the probability of observing a D larger than 730.42 under the
null38, is 0.00055, i.e. very small.

⇝ we reject the hypothesis that the GLM is an adequate description of the data!

37610 = 612 − (1 + 1) = n − (p + 1)
38obtained via 1-pchisq(730.42,610) in R
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> summary(mod)

Call:
glm(formula = goals ~ score_diff, family = poisson)

[...]

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.4168639 0.0334556 12.460 <2e-16 ***
mvdiff 0.0010783 0.0001177 9.162 <2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 813.63 on 611 degrees of freedom
Residual deviance: 730.43 on 610 degrees of freedom
AIC: 1918

Number of Fisher Scoring iterations: 5
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Deviance as a goodness-of-fit check

the deviance can be used to assess overall goodness-of-fit:
• null hypothesis not rejected⇝ GLM describes the data reasonably well
• null hypothesis rejected⇝ there is some lack of fit

if the LRT rejects the GLM, this means that there is relevant structure in the
data not yet captured by the model

this often happens even if the model has already captured a lot of structure
and effectively can’t be improved any further!

in any case, further & more detailed checks should then be conducted to
investigate what’s going on (and hence to decide what to do)

slide 237



Remarks on the deviance

The LRT reflects the classical trade-off between complexity and parsimony:

if model complexity of the GLM considered is increased, the resulting
likelihood will be greater or equal to the likelihood of the simpler model

thus, the deviance of the more complex model will necessarily be smaller or
equal to that of the simpler model

but the scale changes as well: in the more complex model the 0.95-quantile
of the corresponding χ2 distribution39 will be lower than for the simple model

so the more complex model has “a higher bar to cross” to be satisfactory

39which serves as the threshold deciding whether or not the null is accepted
slide 238



LRT for a simple model of the Donner Party data

> summary(mod)

glm(formula = survival ~ age, family = binomial)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.81733 0.37549 2.177 0.0295 *
age -0.03237 0.01509 -2.145 0.0320 *
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 117.26 on 84 degrees of freedom
Residual deviance: 112.25 on 83 degrees of freedom
AIC: 116.25

> 1-pchisq(112.25,83)
[1] 0.01794567

⇝ the LRT rejects this model (it is not adequate)
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LRT for a more complex model of the Donner Party data

> summary(mod)

Call:
glm(formula = survival ~ sex + age + I(age^2), family = binomial)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.041802 0.659164 -1.580 0.11399
sex 1.410763 0.559009 2.524 0.01161 *
age 0.156285 0.068051 2.297 0.02164 *
I(age^2) -0.004130 0.001583 -2.608 0.00911 **
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 117.258 on 84 degrees of freedom
Residual deviance: 97.858 on 81 degrees of freedom
AIC: 105.86

> 1-pchisq(97.858,81)
[1] 0.09784643

⇝ the LRT does not reject this model (it seems to be adequate)
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Chapter 6: Model selection & model checking

6.5 Residual analyses for GLMs
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Residual analysis for linear regression models

For a linear regression model,

Yi = β0 + β1xi1 + . . .+ βpxip + ϵi ,

the residuals are simply the vertical distances between observed responses and
predictions based on the fitted model:

ϵi = yi − (β̂0 + β̂1xi1 + . . .+ β̂pxip) = yi − ŷi , i = 1, . . . , n.

Using suitable residual plots, we can check the adequacy of the assumption of
linear effects and the (commonly made) assumption(s) that ϵi

iid∼ N (0, σ2).40

40cf. assumptions (i), (iii), (iv) and (v) on slide 49.
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Residual plots

The following residual plots are often useful:

a plot of the residuals against an individual covariate
(to display possible problems with the way the covariate effect is modelled)

a plot of the residuals against the corresponding predicted values
(to display possible heteroscedasticity)

a plot of the residuals against observation index (especially for time series)
(to display possible problems with the assumed independence of the ϵi )

All of the above plots can also help to identify potential outliers.
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Residual analysis for linear regression models — Example 1
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Residual analysis for linear regression models — Example 2
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Residual analysis for linear regression models — Example 3
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Residual analysis for linear regression models — Example 4
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Residual analysis for linear regression models — Example 5
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Residual analysis for linear regression models — Example 6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

10 15 20 25 30

−
40

−
20

0
20

40

predicted values

re
si

du
al

s

slide 249



Residual analysis for linear regression models — summary

What to look out for:

pattern in residuals vs. covariate values plot⇝ perhaps nonlinearity

funnel-shaped residual plot⇝ perhaps heteroscedasticity

pattern in residuals vs. index plot⇝ observations possibly not independent

asymmetric distribution of residuals around 0⇝ perhaps non-normality

pattern looks random except for 1-2 extreme values⇝ outliers?

Rule-of-thumb: the more random, the better!
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Model checking for GLMs

For GLMs, the situation is slightly more involved:

in general, the error variance is not constant
(which needs to be taken into account — see next slide)

the error terms are in general not normally distributed
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Illustration of error terms in GLMs
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for this artificial data generated from a Poisson GLM, the variance in the
error increases as the predictor value increases

based on this residual plot, it is next to impossible to judge whether or not
the mean-variance relation implied by the model is adequate
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Pearson residuals

An obvious and simple way to obtain meaningful residuals for GLMs is to
standardise the ordinary residuals:

ϵp
i =

yi − ŷi

σ̂i
,

where σ̂i is the estimated standard deviation of Yi under the fitted model.

These are so-called Pearson residuals.

If the model is adequate, the Pearson residuals should have
zero mean

variance approximately equal to 1
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Pearson residuals

For a Poisson GLM,
ϵp

i =

For a Bernoulli GLM,
ϵp

i =
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Illustration of Pearson residuals
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same artificial data as before

no clear pattern (to be expected, as the correct model is used here!)

sample variance of Pearson residuals ≈ 1
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Pearson residuals in the football example
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a few outliers, but overall no clear pattern

however, the sample variance of the Pearson residuals here is ≈ 1.08

in other words, the variance of the observations is slightly higher than
implied under the fitted Poisson GLM (⇝ overdispersion)

this is probably the main reason why the GLM was rejected by the LRT
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Deviance residuals

The distribution of Pearson residuals if often highly asymmetric41, so we can’t use
the normal distribution as a benchmark, e.g. to identify outliers.

In this respect, deviance residuals are often preferable — these are obtained by
noting that in the deviance,

D = 2
(
logL(θ̂sat)− logL(θ̂sim)

)
= 2

( n∑
i=1

(
yib(θ̂i,sat) + c(θ̂i,sat) + d(yi)

)
−

n∑
i=1

(
yib(θ̂i,sim) + c(θ̂i,sim) + d(yi)

))
=

n∑
i=1

2
(
yi(b(θ̂i,sat)− b(θ̂i,sim)) + c(θ̂i,sat)− c(θ̂i,sim)

)︸ ︷︷ ︸
=di

,

the i–th summand, di , gives the contribution of the i–th data point to the deviance.

41since the standardisation doesn’t address the asymmetry of the response’s distribution
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Deviance residuals

The deviance residuals are defined as

ϵd
i = sign(yi − ŷi)

√
di

(by taking the square root, we achieve that for the standard linear regression
model the deviance residuals reduce to ordinary residuals)

If the fitted model is adequate, then these residuals are approximately normally
distributed, with mean zero and constant variance.42

42(unstandardised) deviance residuals, as above, do not have unit variance (but can be standardised)
slide 258



Illustration of deviance residuals
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same artificial data as before

as for the Pearson residuals, no clear pattern
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GLM residuals in R

In R, for a fitted GLM object mod, pearson residuals and deviance residuals can
be obtained by

residuals(mod,type="pearson")

and

residuals(mod,type="deviance")

respectively.
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Summary — finding a suitable GLM for given data

In practice, the search for an adequate model involves:

1. exploratory data analysis!!!

2. formulating and fitting plausible candidate models

3. using model selection tools to choose best model from the candidate models

4. checking if the chosen model captures all relevant structure in the data:
• LRT does not lead to rejection, residual plots look good⇝ take as final model
• any problems are revealed⇝ go back to the drawing board (step 2.) and use

your insights from 4. to formulate better candidate models
• alternatively, if model can’t easily be improved and/or lack of fit is not pertinent to

study aim, then we may stick to it

Steps 2., 3. and 4. require a good intuition for the data at hand and careful
thinking, taking the study aims into account.
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Chapter 7: Mixed models

7.1 Illustrating example & motivation
7.2 Linear mixed models (LMMs)
7.3 Generalised linear mixed models (GLMMs)

slide 262



Chapter 7: Mixed models

7.1 Illustrating example & motivation
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Another look at the football model
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Figure: Poisson GLM E(goals) = e0.417+0.001·mvdiff fitted to the 18/19 Bundesliga data.
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⇝ some teams overall underperformed in this season, others overperformed
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⇝ each of the 18 teams is associated with 34 of the 612 data points

⇝ some teams were systematically better/worse than implied by the model

Simple model not taking into account team-specific effects:

E(goals) = eβ0+β1·mvdiff

ℓ = −957, AIC = 1918, BIC = 1927

Alternative model with team-specific effects modelled using dummy variables43:

E(goals) = eβ0+β1·mvdiff+β2·IB04+...+β18·IWOB

ℓ = −935, AIC = 1908, BIC = 1992

Problem with the the latter model: fairly many parameters (i.e. rather complex).

43here with “AUG” (Augsburg) representing the reference category
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E(goals) = eβ0+β1·mvdiff+β2·IB04+...+β18·IWOB

The model as it stands effectively estimates one intercept for each team.

intercept value

de
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Figure: Histogram of the 18 intercepts estimated in the Poisson GLM for the football data.
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Alternative approach, with a so-called mixed model where for each team the
intercept is assumed to be a realisation of a random variable:

E(goalsij) = eβ0,i+β1·mvdiffij , i = 1, . . . , 18, j = 1, . . . , 34

β0,i ∼ N (β0, σ
2), i = 1, . . . , 18

i refers to the team, j refers to the matchday44

each team has its own intercept β0,i , a so-called random effect

we estimate, in addition to β1, the parameters β0 and σ2

Equivalent specification, separating population-wide intercept β0 and unit-specific
random deviation:

E(goalsij) = eβ0+β1mvdiffij+γ0i , γ0i ∼ N (0, σ2)

44e.g. goals3,11 would be the number of goals scored by the third team (“BAY”) on matchday 11
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Mixed model fitted in the football example

Skipping the technical details for now, the model was estimated as follows:

E(goalsij) = e0.403+0.001·mvdiffij+γ0i , γ0i ∼ N (0, 0.172)
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Figure: The 18 regression functions as inferred under the fitted mixed model.
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Mixed models as parsimonious approaches for addressing heterogeneity

E(goalsij) = eβ0+β1mvdiffij+γ0i , γ0i ∼ N (0, σ2), i = 1, . . . , 18

Let’s summarise the main idea:

some data sets have a hierarchical structure, where a bunch of data points
is available for each of several observational units

the regression function may vary slightly across the units

such heterogeneity is most parsimoniously modelled using random effects

it often also makes conceptual sense to frame systematic deviation from a
population model as a random rather than a particular subject’s effect45

mixed models borrow strength across units yet account for heterogeneity

45e.g. Bremen’s overperformance last season surely doesn’t mean they consistently overperform
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Potential pitfalls when neglecting hierarchical structures

Not accounting for hierarchical structures...

1. ...is (clearly) inadequate if interest lies in the variation across units

2. ...may invalidate standard errors, CIs and hypothesis tests
(when neglecting heterogeneity the independence assumption is violated!)

3. ...may in extreme cases lead to Simpson’s paradox

2. and 3. will be illustrated on the next few slides.
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Uncertainty quantification neglecting hierarchical structure — toy example

x y unit
0.83 1.99 A
2.31 2.03 A
1.20 1.91 A
2.69 2.61 A
2.84 1.99 A
0.12 2.42 A
1.52 1.34 A
2.67 2.30 A
1.65 2.01 B
1.32 2.02 B

... ... ...

2.35 1.85 E
0.28 2.50 E
1.40 3.18 E
1.53 1.84 E
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> mod<-lm(y~x)
> summary(mod)

Residuals:
Min 1Q Median 3Q Max

-0.27720 -0.12646 0.02025 0.11538 0.30571

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.03674 0.05189 39.25 <2e-16 ***
x 0.06751 0.04441 1.52 0.137
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> mod<-lm(y~x+unit)
> summary(mod)

Residuals:
Min 1Q Median 3Q Max

-0.083414 -0.023089 0.005116 0.028026 0.092471

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.80798 0.02176 83.102 < 2e-16 ***
x 0.08677 0.01287 6.743 9.50e-08 ***
unitB 0.10167 0.02203 4.614 5.41e-05 ***
unitC 0.22190 0.02156 10.291 5.56e-12 ***
unitD 0.30489 0.02208 13.807 1.69e-15 ***
unitE 0.41626 0.02165 19.226 < 2e-16 ***
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Simpson’s paradox — toy example

Displayed on the right
is an artificial data set:

x y

0.08 2.72

0.90 3.06

1.04 2.70

0.30 3.06

0.19 2.82

0.04 3.06

0.20 3.62

... ...

2.35 5.84

2.18 6.28
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⇝ clearly a positive effect of X on Y , right?
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Same data but complemented
with information on units:

x y unit

0.08 2.72 A

0.90 3.06 A

1.04 2.70 A

0.30 3.06 A

0.19 2.82 A

0.04 3.06 A

0.20 3.62 A

... ...
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⇝ unit-specific intercepts & negative effect of X on Y !

slide 275



Things we’ve learned so far

it can be crucially important to account for hierarchical data structure

especially when there are many units, it may make sense to use random
effects46 as to parsimoniously model heterogeneity across units

46as opposed to unit-specific dummy variables
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Chapter 7: Mixed models

7.2 Linear mixed models (LMMs)

slide 277



Some terminology

Regarding the data:

now interested in hierarchical structures (also repeated measurements47)

specifically, situations where we have ni observations for each of m units

Regarding the model for such data:

different labels48: mixed model, hierarchical model, or multi-level model

“mixed” as the model contains both fixed effects and random effects

Regarding the effects being modelled:

fixed effects describe (population-level) covariate-response relationship

random effects model unexplained variation across units

47panel data, where several consecutive observations are made for each of a set of individuals — i.e.
repeated measurements — constitute a special case of a hierarchical structure

48depending on context and/or strand of literature
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Potential applications

Hierarchical structures — with several data points collected for each of multiple
units — occur all over the place:

students’ performances measured in different universities

patients treated in different hospitals

multiple test results for each of several patients

flat rent prices from multiple cities

behavioural data from several animals

etc.
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Baseline linear regression model in hierarchical setting

The data from now on are vectors of the form

(Yij , xij),

where i = 1, . . . ,m indicates the observational unit and j = 1, . . . , ni the
observation therein.

In a setting with such hierarchically structured data — not yet accounting for
heterogeneity — the linear regression model can simply be written as

Yij = β0 + β1xij1 + . . .+ βpxijp + ϵij , i = 1, . . . ,m, j = 1, . . . , ni
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Yij = β0 + β1xij1 + . . .+ βpxijp + ϵij , i = 1, . . . ,m, j = 1, . . . , ni

In matrix notation, with one equation for each unit49:

Yi = Xiβ + ϵi , i = 1, . . . ,m,

with

Yi =

Yi1

...
Yini

 , Xi =

1 xi11 . . . xi1p

...
...

...
...

1 xini 1 . . . xini p

 , β =


β0

β1

...
βp

 , ϵi =

ϵi1

...
ϵini



49alternatively, we could stack the vectors/matrices such that there would be only one equation
covering all observations — but explicitly distinguishing units will be useful later on!
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First step: let’s add a unit-specific intercept

To account for heterogeneity that manifests itself in the height of the regression
function, we can add a unit-specific deviation from the population intercept:

Yij = β0 + β1xij1 + . . .+ βpxijp + γ0i + ϵij

As seen before in the football example, we could now...

a) ...estimate γ0i for each i = 1, . . . ,m (dropping the β0 from the model)

b) ...assume say γ0i ∼ N (0, σ2) and estimate σ2 (only!)

In many cases, especially when m is large, b) will be preferable.
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Yij = β0 + β1xij1 + . . .+ βpxijp + γ0i + ϵij

In matrix notation:

Yi = Xiβ + Uiγ i + ϵi , i = 1, . . . ,m,

with Yi , Xi , β and ϵi exactly as before and

Ui =

1
...
1

 , γ i = (γ0i)
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Illustration of the random-intercept model
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Second step: unit-specific covariate effects

To also address potential heterogeneity in the covariate effects, we can further
add unit-specific deviations from the overall slope(s):

Yij = β0 + β1xij1 + . . .+ βpxijp + γ0i + γ1ixij1 + . . .+ γpixijp + ϵij

Again, we could now...

a) ...estimate γ i = (γ0i , . . . , γpi) for each i = 1, . . . ,m (dropping all βs)

b) ...assume say γ i ∼ N (0,Q) and estimate the var.-cov. matrix Q

In this setting, a) would effectively amount to separately fitting m regression
models⇝ not parsimonious at all!
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Yij = β0 + β1xij1 + . . .+ βpxijp + γ0i + γ1ixij1 + . . .+ γpixijp + ϵij

In matrix notation:

Yi = Xiβ + Uiγ i + ϵi , i = 1, . . . ,m,

with Yi , Xi , β and ϵi exactly as before and now

Ui =

1 xi11 . . . xi1p

...
...

...
...

1 xini 1 . . . xini p

 , γ i =


γ0i

γ1i

...
γpi
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Illustration of the random-intercept & random-slope model
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Putting it all together: general model formulation

The linear mixed model (LMM), with fixed effects β and random ef-
fects γ i , is defined as

Yi = Xiβ + Uiγ i + ϵi ,

for units i = 1, . . . ,m, the i–th of which comprises ni observations. The
columns of Ui usually are a subset of the columns of Xi

50.

Distributional assumptions:

γ i ∼ N (0,Q), ϵi ∼ N (0, σ2Ini )

50e.g. only the intercept, or the intercept plus 1-2 of the slope coefficients could be random effects
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A concrete example — sleep deprivation study

reaction nights of
subject ID time in ms sleep deprivation

308 249.5600 0
308 258.7047 1

...
...

...
308 466.3535 9

333 283.8424 0
333 289.5550 1

...
...

...
333 362.0428 9

...
...

...

372 269.4117 0
372 273.4740 1

...
...

...
372 364.1236 9

Table: Sleep deprivation study with 18 participants, each of whom was subjected to nine
consecutive nights with only three hours of sleep.
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Figure: Visualisation of the influence of the magnitude of sleep deprivation on reaction
times, here completely neglecting the hierarchical structure of the data set.

slide 290



> mod<-lm(reaction~nights)

> summary(mod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 251.405 6.610 38.033 < 2e-16 ***

nights 10.467 1.238 8.454 9.89e-15 ***

Fitted linear model:

E(reaction) = 251.4 + 10.7 · nights
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Residual analysis for the fitted linear model
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Figure: Residuals of the linear model plotted against observation index.

What we see is a problem that very often occurs when neglecting hierarchical
structures: the independence assumption is violated!
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Exploratory data analysis w.r.t. heterogeneity across observational units
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Figure: Subject-specific linear models illustrating heterogeneity in both intercept and slope.
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> mod<-lm(reaction~nights+subject+nights*subject)

> summary(mod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 244.193 15.042 16.234 < 2e-16 *** nights:subject309 -19.503 3.985 -4.895 2.61e-06 ***

nights 21.765 2.818 7.725 1.74e-12 *** nights:subject310 -15.650 3.985 -3.928 0.000133 ***

subject309 -39.138 21.272 -1.840 0.067848 . nights:subject330 -18.757 3.985 -4.707 5.84e-06 ***

subject310 -40.708 21.272 -1.914 0.057643 . nights:subject331 -16.499 3.985 -4.141 5.88e-05 ***

subject330 45.492 21.272 2.139 0.034156 * nights:subject332 -12.198 3.985 -3.061 0.002630 **

subject331 41.546 21.272 1.953 0.052749 . nights:subject333 -12.623 3.985 -3.168 0.001876 **

subject332 20.059 21.272 0.943 0.347277 nights:subject334 -9.512 3.985 -2.387 0.018282 *

subject333 30.826 21.272 1.449 0.149471 nights:subject335 -24.646 3.985 -6.185 6.07e-09 ***

subject334 -4.030 21.272 -0.189 0.850016 nights:subject337 -2.739 3.985 -0.687 0.492986

subject335 18.842 21.272 0.886 0.377224 nights:subject349 -8.271 3.985 -2.076 0.039704 *

subject337 45.911 21.272 2.158 0.032563 * nights:subject350 -2.261 3.985 -0.567 0.571360

subject349 -29.081 21.272 -1.367 0.173728 nights:subject351 -15.331 3.985 -3.848 0.000179 ***

subject350 -18.358 21.272 -0.863 0.389568 nights:subject352 -8.198 3.985 -2.057 0.041448 *

subject351 16.954 21.272 0.797 0.426751 nights:subject369 -10.417 3.985 -2.614 0.009895 **

subject352 32.179 21.272 1.513 0.132535 nights:subject370 -3.709 3.985 -0.931 0.353560

subject369 10.775 21.272 0.507 0.613243 nights:subject371 -12.576 3.985 -3.156 0.001947 **

subject370 -33.744 21.272 -1.586 0.114870 nights:subject372 -10.467 3.985 -2.627 0.009554 **

subject371 9.443 21.272 0.444 0.657759

subject372 22.852 21.272 1.074 0.284497

Fitted linear model with subject-specific intercepts and slopes:

E(reaction) = 244.2 + 21.8 · nights− 39.1 · Isubject309 − 40.7 · Isubject310 + . . .

− 19.5 · nights · Isubject309 − 15.7 · nights · Isubject310 + . . .

Very many parameters & difficult to interpret!!
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Natural linear mixed model for the sleep deprivation data:

E(reactionij) = β0 + β1 · nightsj + γ0i + γ1i · nightsj

i = 1, . . . , 18, j = 1, . . . , 10

γ i =

(
γ0i

γ1i

)
∼ N

(
0,Q

)

Different R packages allow to fit such models — lme4 in particular is very popular.
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> library(lme4)
> mod<-lmer(reaction~nights+(nights|subject))
> summary(mod)

Random effects:
Groups Name Variance Std.Dev. Corr
subject (Intercept) 611.90 24.737

nights 35.08 5.923 0.07

Fixed effects:
Estimate Std. Error t value

(Intercept) 251.405 6.824 36.843
nights 10.467 1.546 6.771

Fitted linear mixed model:

E(reactionij) = 251.4 + 10.5 · nightsj + γ0i + γ1i · nightsj

γ i =

(
γ0i

γ1i

)
∼ N

((
0
0

)
,

(
611.9 10.3
10.3 35.1

))
The fixed effects 251.4 and 10.5 can be interpreted as the population means of
intercept and slope, respectively.
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Figure: Estimated subject-specific intercepts and slopes obtained using ranef(...) from
lme4— the bivariate normal random effects distribution is indicated by the contour lines.
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Figure: The 18 subject-specific regression functions under the fitted LMM.
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Some remarks on the lmer syntax

When the (factor) variable g indicates the observational units, then the general
lmer syntax for fitting an LMM is

lmer(response ~ FEexpr + (REexpr | g))

FEexpr is a formula for a linear predictor, just as it would be used in lm or
glm, comprising only fixed effects

REexpr is the analogous formula but for the random effects, with one
realisation for each level of the factor g

Table: Examples for the lmer syntax.

formula meaning

x+(x|g) random intercept, random slope
x+(1|g) random intercept, fixed slope

x+(x-1|g) fixed intercept, random slope
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Table: Comparison of various candidate models for the sleep deprivation data.

predictor of short number of
the model fitted description param. AIC BIC

nights basic LM 3 1906.3 1915.9

nights+subject+ LM with subject-specific 37 1711.9 1830.0
nights*subject intercepts and slopes

nights+ LMM with random 6 1755.6 1774.8
(nights|subject) intercepts and slopes

slide 300



On the next few slides, we briefly sketch parameter estimation in LMMs — rather
technical & not exam-relevant, will only be shown if time allows.
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LMM with m unit-specific matrix equations:

Yi = Xiβ + Uiγ i + ϵi , i = 1, . . . ,m

Stacking the m equations, we obtain a single matrix equation:

Y = Xβ + Uγ + ϵ,

with β as before, the vectors

Y =

Y1

...
Ym

 , γ =

γ1
...

γm

 , ϵ =

ϵ1

...
ϵm

 ,

each of length
∑m

i=1 ni , and the design matrices

X =

X1

...
Xm

 , U =

U1 0
. . .

0 Um

 .
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We can thus write the LMM as

Y = Xβ + Uγ + ϵ, (3)

with (
γ
ϵ

)
∼ N

((
0
0

)
,

(
G 0
0 R

))
, (4)

where

G =

Q 0
. . .

0 Q

 , R =

σ2In1 0
. . .

0 σ2Inm



Equations (1) and (2) together constitute a very general form which is often useful
— for example, certain nonparametric models can be framed as such a model51.

51then with different specifications of the matrices involved than in case of the LMMs seen so far
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Maximum likelihood estimation of fixed and random effects52

Re-expressing the LMM as follows,

Y = Xβ + Uγ + ϵ︸ ︷︷ ︸
=ϵ∗

= Xβ + ϵ∗,

the so-called marginal model formulation is obtained as

Y ∼ N
(
Xβ,UGUt + R︸ ︷︷ ︸

=V

)
.

The estimators of the fixed and random effects are obtained as

β̂ = (Xt V̂−1X)−1Xt V̂−1Y and γ̂ = ĜUt V̂−1(Y− Xβ),

respectively, plugging in the maximum likelihood estimator V̂ for V — the latter is
relatively easily obtained using profile likelihood.

52skipping the rather tedious technical details
(cf. Chapter 7 in “Regression: Models, Methods and Applications” by Fahrmeir et al., 2013)
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Chapter 7: Mixed models

7.3 Generalised linear mixed models (GLMMs)
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From LMMs to GLMMs — preliminary remarks

In terms of the model formulation, the extension from LMMs to GLMMs is
completely straightforward, as it only concerns the linear predictor.

We have in fact already seen a GLMM, namely the random-intercept model for
the football data at the beginning of this chapter.

Estimation of GLMMs is however much more involved — not covered here.
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A generalised linear mixed model (GLMM), with fixed effects β and
random effects γ i , is specified as follows:

1. the response variables have a hierarchical structure, with m
observational units, the i–th of which comprises ni observations:

Yij , i = 1, . . . ,m, j = 1, . . . , ni

2. conditional on the γ i , the response variables Yij are independent of
each other and follow some distribution from the exponential family

3. the conditional mean of the response is linked to the linear predictor
via an invertible and differentiable link function g,

g
(
E(Yij)

)
= ηij

4. the linear predictor involves both fixed and random effects,

ηi = Xiβ + Uiγ i , i = 1, . . . ,m

5. the random effects are iid with

γ i ∼ N (0,Q)
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Fitting GLMMs using glmer from the lme4 package

> library(lme4)

> mod<-glmer(goals~mvdiff+(1|team),family=poisson)

> summary(mod)

Random effects:

Groups Name Variance Std.Dev.

Team (Intercept) 0.02829 0.1682

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.4025963 0.0523257 7.694 1.43e-14 ***

MWdiff 0.0010419 0.0001586 6.569 5.08e-11 ***

Fitted Poisson GLMM:

E(goalsij) = e0.403+0.001·mvdiffij+γ0i , γ0i ∼ N (0, 0.172)
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Table: Comparison of various candidate models for the football data.

predictor of short number of
the model fitted description param. AIC BIC

mvdiff basic Poisson GLM 2 1918.0 1926.9

mvdiff+team Poisson GLM with subject- 19 1907.6 1991.6
specific intercepts

mvdiff+ Poisson GLMM with 3 1911.9 1925.1
(1|team) random intercepts

mvdiff+team+ Poisson GLM with subject- 36 1921.9 2080.9
mvdiff*team specific intercepts and slopes

mvdiff+ Poisson GLMM with 5 1913.5 1935.5
(mvdiff|team) random intercepts and slopes
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A second GLMM example — speed dating

gender of attractiveness shared
match person considered of partner interests

subject ID yes (1) / no (0) (1: male) (scale: 0-10) (scale 0-10)

1 0 0 6 5
1 1 0 7 6
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1 0 0 5 8

2 0 0 5 3
2 0 0 8 6
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2 0 0 6 8

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

452 0 1 7 1
452 1 1 6 8

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
452 0 1 3 1

Table: Speed dating experiment with 452 participants, each with multiple dates.
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> mod<-glm(match~gender+attr+shar,family=binomial)
> summary(mod)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.85168 0.16348 -29.677 < 2e-16 ***
gender -0.22181 0.06805 -3.259 0.00112 **
attr 0.30349 0.02189 13.866 < 2e-16 ***
shar 0.26295 0.01930 13.627 < 2e-16 ***

Fitted logistic regression model (a GLM):

logit
(
Pr(match)

)
= −4.85− 0.22 · gender + 0.30 · attr + 0.26 · shar

AIC = 5494.7
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Figure: Subject-specific GLMs logit
(
Pr(match)

)
= β0 + β1 · attr and ... = β0 + β1 · shar

illustrating potential heterogeneity across participants.
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> mod<-glmer(match~gender+attr+shar+(1|iid),family=binomial)
> summary(mod)

Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 0.5824 0.7632

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.75389 0.21238 -27.093 <2e-16 ***
gender -0.25883 0.10465 -2.473 0.0134 *
attr 0.37643 0.02530 14.876 <2e-16 ***
shar 0.32012 0.02256 14.189 <2e-16 ***

Fitted random-intercept logistic regression model (a GLMM):

logit
(
Pr(matchij)

)
= −5.75− 0.26 · genderi + 0.38 · attrij + 0.32 · sharij + γ0i

i = 1, . . . , 452, j = 1, . . . , ni , γ0i ∼ N (0, 0.762), AIC = 5352.0

Interpretation: the random intercept γ0i effectively accounts for the fact that some
people are “pickier” than others.
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Fitted GLMM including two additional random slopes, assuming random effects to
be uncorrelated (just for simplicity):

logit
(
Pr(matchij)

)
= −5.65− 0.25 · genderi + 0.36 · attrij + 0.32 · sharij

+ γ0i + γ1i · attrij + γ2i · sharij

γ0i ∼ N (0, 0.252), γ1i ∼ N (0, 0.092), γ2i ∼ N (0, 0.052), AIC = 5343.9

Interpretation of the random slopes: some people put more emphasis on
attractiveness/shared interests than others.
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Recommendations regarding the use of mixed models

Exploratory data analysis (EDA) with respect to potential heterogeneity:

take a look at unit-specific scatterplots

when possible, fit unit-specific regression models and
a) plot the unit-specific regression functions
b) inspect empirical distribution of estimated coefficients

Model specification:

should be driven by EDA as well as domain expertise

when there’s a random slope, then there should usually also be
a) a corresponding fixed effect
b) a random intercept

don’t include too many random slopes — estimation becomes unstable!
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Summary of Chapter 7

in practice, we are often faced with hierarchically structured data:
• several observations for each of multiple observational units
• repeated measurements for several subjects (⇝ panel data)

in such cases, basic LMs and GLMs are often invalid due to the
independence assumption being violated

LMMs & GLMMs are parsimonious models that can accommodate
unit-specific deviations from an overall pattern

inferential machinery is much more involved & there are many pitfalls!!
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Chapter 8: Extensions & summary

8.1 Nonparametric effect modelling
8.2 Models for overdispersed data
8.3 Dealing with zero-inflated data
8.4 Bayesian inference for GLMs
8.5 Summary
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Outlook: Extensions

Things you may come across at some point:

nonparametric effect modelling

dealing with overdispersion

zero-inflated Poisson regression

multinomial (logistic) regression

beta regression for proportions

Bayesian estimation of GLMs

lasso/boosting/etc.

Some of these extensions/techniques are briefly illustrated in the following.
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Chapter 8: Extensions & summary

8.1 Nonparametric effect modelling
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Back to square one...

On slides 5 & 6, we went straight from the general regression model formulation

Yi = f (xi1, . . ., xip) + ϵi , E(ϵi) = 0,

to the (restrictive) linear model where

f (xi1, . . . , xip) = β0 + β1xi1 + β2xi2 + . . .+ βpxip

We can go a long way based on this (simplified) model formulation, however
there are cases where we want more flexibility.
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Figure: Acceleration measurements made for the head of a motorcyclist in the milliseconds
following a simulated collision.
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Flexible modelling with parametric regression models

We can substantially increase the flexibility of the predictor by considering
variable transformations (cf. slide 60), for example:

β0 + β1xi1

β0 + β1xi1 + β2xi2

β0 + β1xi1 + β2x2
i1

β0 + β1
√

xi1

β0 + β1xi1 + β2xi2 + β3xi1xi2

β0 + β1xi1 + β2x2
i1 + β3x3

i1 + β4x4
i1

In particular, using polynomials as in the last example above we can capture very
flexible shapes of the regression function — see examples on the next slides.
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Figure: Simulated data (yi , xi), i = 1, . . . , 100, and fitted linear regression models with
polynomial predictor β0 + β1xi + β2x2

i + . . .+ βk xk
i .
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Polynomials for the win?

Using polynomials, we can obtain effectively unlimited flexibility.

HOWEVER:

higher-order polynomials are very unstable/heavily affected by outliers

trying out all potential orders, for each covariate considered, is tedious

As a consequence, in practice it is uncommon to use polynomials of order > 2.
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Nonparametric regression

In case of p = 1 (one covariate), we are interested in the model:

Y = f (x) + ϵ

Instead of predetermining a specific form of f (linear, quadratic, etc.), we now turn
to nonparametric estimation of f : essentially fitting a smooth curve to the data.
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We will focus on one (of many possible) techniques: P–spline smoothing.
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Estimation of f using spline basis functions — overview of the idea

Basic idea: construct function f (x) as weighted sum of fixed basis functions,

f (x) = γ1B1(x) + γ2B2(x) + . . .+ γK BK (x),

estimating the weights γ1, . . . , γK to fit the model.
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B–spline basis functions
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Figure: The left plot shows a single B–spline basis function of degree 1, the plot on the right
shows a corresponding set of basis functions.

B–splines are particularly popular basis functions. The ones shown here —
which are of degree 1 — are constructed as follows:

three knots for each spline, two linear pieces in-between

the linear pieces connect at the knots

splines overlap such that B1(x) + B2(x) + . . .+ BK (x) = 1 for all x
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Curve fitting with B–splines of degree 1
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⇝ linear combination of B–splines produces reasonable fit

⇝ however, the estimated regression function f̂ (x) is not smooth
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Higher degrees of the B–spline basis functions
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Figure: B–splines of degree 2.

The construction is effectively analogous:

now four knots for each spline, three quadratic polynomials in-between

at the joining points, the derivatives match each other (i.e. spline is smooth)

This concept can be applied to construct B–splines of general degree d — in the
following, we will however restrict the discussion to the case d = 2.
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Curve fitting with B–splines of degree 2
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⇝ the fit again looks good

⇝ and this time f̂ (x) is smooth (more precisely, it is once differentiable)
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Choice of K
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The previous slide illustrates:

the choice of K reflects the classic bias-variance trade-off:
• K too small⇝ underfitting (large bias)
• K too large⇝ overfitting (large variance)

we could select the optimal K say based on AIC, but that would effectively
be just as tedious as polynomial regression53

53 in fact, one also needs to choose the positioning of the knots
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P–spline smoothing — the idea

Instead of choosing K , P–spline smoothing proceeds as follows:

use a K large enough to allow for any interesting shapes of f (say K = 30)

add penalty term to objective function to prevent overfitting

The objective function in penalised least squares estimation then has the form

sum of squares + λ · measure for overall curvature,

to be minimised with respect to the γi coefficients determining f .

The smoothing parameter λ is used to control how much emphasis we put on
“smoothness” and allows us to find the right balance between under-/overfitting:

for λ = 0, we are back in the unpenalised situation

for λ→∞, we obtain a straight line fit
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Figure: P–spline smoother obtained when using λ = 0.1 (and K = 30).

Very small λ⇝ overfitting.
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Figure: P–spline smoother obtained when using λ = 10 (and K = 30).

Moderate λ⇝ fit looks good!
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Figure: P–spline smoother obtained when using λ = 200 (and K = 30).

Large λ⇝ underfitting.
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Figure: P–spline smoother obtained when using λ = 100, 000 (and K = 30).

Very large λ⇝ we end up with the best possible straight line fit.
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Let xi1, . . . , xip be continuous covariates, and zi1, . . . , ziq additional cova-
riates. A generalised additive model (GAM) is specified as follows:

1. the response variables Yi are independent of each other and follow
some distribution from the exponential family;

2. the mean of the response is linked to the linear predictor via an
invertible and differentiable link function g,

g
(
E(Yi)

)
= ηi ;

3. the linear predictor involves linear and smooth effects, the latter with
an additive structure,

ηi = β0 + β1zi1 + . . .+ βqziq + f1(xi1) + . . .+ fp(xip)

⇝ so just like a GLM, but with some linear effects replaced by smooth effects
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GAMs in R — the mgcv package

In R, GAMs can easily be fitted using the gam function from the mgcv package:

gam(response ~ z1 + ... + zq + s(x1) + ... + s(xp),

family = ...(link=...))

the functionality of the family option is exactly as for glm

any covariate that enters the formula “as is” is modelled using a linear effect

by adding the wrapper s(), we specify that a smooth effect is modelled

by default, so-called thin plate splines are used as basis

P–splines are used when adding the option bs="ps"
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mod<-gam(acceleration~s(time),bs="ps")
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Figure: GAM fitted in the motorcycle example.
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Chapter 8: Extensions & summary

8.2 Models for overdispersed data
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Dealing with overdispersion

Especially in Poisson regression, it often happens that a seemingly adequate
model is rejected by the LRT because the mean-variance relation isn’t right.54
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[1] 0.0003141043 [1] 0.9191014

54recall that, in a Poisson regression model, we implicitly also explain the variance via the covariates
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If the variances are larger than expected under the model, then we
refer to this as overdispersion.

In such a case, proceeding with the invalid Poisson regression model leads to
invalid estimation of the standard errors, and hence to invalid CIs and tests.55

Instead, models with additional dispersion parameters need to be considered:

glm(y~x,family=quasipoisson)

or

glm(y~x,family=quasibinomial)

An alternative would be to fit a negative binomial regression model.

55the reason simply being that the actual variance/uncertainty is larger than we think
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> mod1<-glm(y~x,family=poisson)

> summary(mod1)

Call:

glm(formula = y ~ x, family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.9907 -1.1265 -0.2519 0.6725 3.4717

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.01383 0.08133 12.46 <2e-16 ***

x 0.29334 0.01109 26.45 <2e-16 ***

(Dispersion parameter for poisson family taken to be 1)
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> mod2<-glm(y~x,family=quasipoisson)

> summary(mod2)

Call:

glm(formula = y ~ x, family = quasipoisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.9907 -1.1265 -0.2519 0.6725 3.4717

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.01383 0.10778 9.406 2.35e-15 ***

x 0.29334 0.01469 19.963 < 2e-16 ***

(Dispersion parameter for quasipoisson family taken to be 1.756048)
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Chapter 8: Extensions & summary

8.3 Dealing with zero-inflated data
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Dealing with zero-inflated count data

Count data very often exhibit an excess of zeros (i.e. an “inflation of zeros”),
relative to other counts predicted under a model.

This is often due to latent variables which determine whether we observe a zero
count or some positive integer.

The R function zeroinfl() from the pscl package can be used to fit
corresponding zero-inflated Poisson regression models, where

Yi

{
= 0 with probability πi

∼ Po
(
eβ0+β1xi1+...+βpxip

)
with probability 1− πi

logit(πi) = α0 + α1xi1 + . . .+ αpxip

(a mixture of a Poisson GLM with a point mass on 0)
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Chapter 8: Extensions & summary

8.4 Bayesian inference for GLMs
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Bayesian estimation of GLMs

GLMs can also be fitted in a Bayesian framework.

Posterior distribution of regression coefficients:

f (β0, . . . , βp|y1, . . . , yn) =
f (y1, . . . , yn|β0, . . . , βp)f (β0, . . . , βp)

f (y1, . . . , yn)

∝ f (y1, . . . , yn|β0, . . . , βp)︸ ︷︷ ︸
likelihood

f (β0, . . . , βp)︸ ︷︷ ︸
prior

⇝ represents our belief about β0, . . . , βp after updating prior belief with data
⇝ need to choose a prior distribution for the β0, . . . , βp

⇝ any expert knowledge can usefully be incorporated here
⇝ unlike ML estimate, the posterior already includes uncertainty quantification

Bayesian estimation of GLMs in R: brms package.
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Bayesian estimation of logistic regression in the Donner party example

logit
(
Pr(survivali)

)
= β0 + β1 · agei
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Maximum a posteriori estimates56:

β̂0 = 0.780, β̂1 = −0.031

Maximum likelihood estimates:

β̂0 = 0.817, β̂1 = −0.032

56bayesglm(survival∼age,family=binomial) (note the default priors are slightly informative)
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Chapter 8: Extensions & summary

8.5 Summary
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Summary

most regression problems can be tackled using standard linear regression
(which is good in the sense that LMs are well understood)

polynomial/smooth terms substantially increase the flexibility of linear
models, allowing for the estimation of nonlinear functional relationships

if the data don’t directly lend themselves to standard linear modelling, then
sometimes transformations will lead to approximately linear systems57

however, sometimes we still need more flexibility, regarding either
• distributional assumptions for the response
• or the functional relationship between covariates and response

in such cases, GLMs may do the trick

57the standard example: modelling log-transformed strictly positive continuous data
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What’s really neat about GLMs is that they constitute a unifying framework for:

various model formulations, including
• Poisson regression
• Bernoulli and binomial regression (i.e. logistic regression)
• gamma regression

the use of link functions to increase flexibility

the associated parameter estimation method (IRLS)

model selection and model checking within these classes of models

GLMs also provide the starting point for many other classes of regression
models, such as GLMMs or GAMs.
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Some recommendations for the (oral) exam

Make sure that...

...you understand each aspect of the GLM definition

...you know the exact model specifications of the special cases of GLMs

...you understand (and can explain) why we need weighted least squares

...you can explain the idea of the method of scoring (no technical details)

...you can tell me how uncertainty quantification works for GLMs

...you can explain the main ideas regarding model selection & checking

...you can explain the idea and the model formulation of mixed models

Perhaps most importantly, practice to actually talk about these things!!

slide 354



slide 355


	Introduction
	Overview
	Motivating examples
	From LMs to GLMs
	Some very basic probability calculus & notation

	Revision of standard linear regression models
	Basic model formulation
	Least squares estimation
	Flexible modelling using linear models

	Non-normal data and the exponential family of distributions
	Distributions of interest
	The exponential family of distributions

	Formulation of generalised linear models
	Distributions of interest
	The special case linear regression
	Poisson regression
	Logistic regression
	Gamma regression

	Parameter estimation and inference
	Why not simply least squares?
	Maximum likelihood estimation
	Maximising the GLM likelihood
	Estimator properties and uncertainty quantification

	Model selection & model checking
	Bias-variance trade-off
	Akaike Information Criterion
	Deviance
	Residual analyses for GLMs

	Mixed models
	Illustrating example & motivation
	Linear mixed models (LMMs)
	Generalised linear mixed models (GLMMs)

	Extensions & summary
	Nonparametric effect modelling
	Models for overdispersed data
	Dealing with zero-inflated data
	Bayesian inference for GLMs
	Summary


